Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронное строение простых связей

    Помимо целей идентификации и спектрофотометрии, электронные спектры поглощения находят широкое применение для решения структурных проблем и прежде всего в химии координационных соединений. Наиболее характерны в этом отношении спектры комплексов переходных металлов, строение которых связано с наличием в них частично или полностью заполненных -орбиталей. Самую простую модель для описания связей в комплексных соединениях переходных металлов дают теории поля лигандов и кристаллического поля. Они позволяют выяснить влияние лигандов на снятие вырождения -орбиталей центрального атома (иона) металла и понять или даже предсказать строение, спектры и магнитные свойства комплексов. Согласно теории кристаллического поля вырожденные электронные энергетические уровни центрального иона могут претерпевать существенные изменения (расщепление) под возмущающим действием полей лигандов, окружающих центральный ион. [c.181]


    Однако это еще не окончательная картина электронного строения бензола, потому что экспериментально наблюдаемая длина связи С—С (1,390 А) оказывается значительно меньше длины простой связи С—С (1,54 А). У каждого атома углерода остается одна негибридизованная 2р-орбиталь, ориентированная перпендикулярно плоскости гексагонального кольца (рис. 13-23). В молекуле бензола 30 валентных электронов по 4 от каждого из шести атомов углерода и по 1 от каждого из шести атомов водорода. Из них 12 электронов используются для образования шести простых связей С—Н и 12-для образования шести простых а-связей С—С. Остаются еше шесть электронов и шесть неиспользованных в а-связях р-орбиталей атомов углерода. Возможно, эти орбитали используются попарно для образования еще трех ковалентных связей. Но как выбрать такие три пары  [c.573]

    По электронному строению молекула S2 подобна молекуле О2. Магнитные свойства последней указывают на наличие в ней двух неспаренных электронов. При четном числе внешних электронов в атоме кислорода (6) это возможно лишь для связи простой ( O—O ) или тройной ( O=O ). Так как длина простой связи О—О составляет около 1,50 А, а в молекуле О2 она равна 1,21 А, связь должна быть тройной. Возникновение структуры 0=0 связано с затратой энергии для перевода неспаренных электронов на более высокий энергетический уровень (3s) и преодоления их взаимного отталкивания (из-за параллельности спинов). Однако такая затрата перекрывается энергией образования тройной связи. Как следует из спектральных данных, переход от приведенной выше к обычно принимаемой для молекулы кислорода электронной структуре 0=0 требует затраты 22 ккал/моль. Эта структура является, следовательно, не основной для молекулы кислорода, а возбужденной (с энергией диссоциации 97 ккал/моль). [c.322]

    Аналитическая классификация катионов по группам базируйся )и химических свойствах катионов и тесно связана с их электронным строением и положением соответствующих элементов в периодической системе. Эта связь достаточно глубока и )1а первый взгляд не всегда проявляется в виде простой внешней корреляции. Например, как уже отмечалось [c.290]

    Электронное строение простых и кратных углерод-углеродных связей [c.45]

    ЭЛЕКТРОННОЕ СТРОЕНИЕ ПРОСТЫХ И КРАТНЫХ УГЛЕРОД-УГЛЕРОДНЫХ СВЯЗЕЙ [c.71]

    Они имеют более сложное электронное строение. Тройная связь представляет собой сочетание о-связи и двух простых тг-связей, локализованных в одном межъядерном пространстве. Алкины вносят в химию углеводородов по сравнению с алкенами новые свойства, такие как миграция кратной связи вдоль углеродной цепи  [c.315]


    Электронное строение простых ковалентных связей. Образование ковалентной химической связи происходит при взаимном перекрывании электронных облаков двух атомов, причем связь создается в том направлении, в котором происходит наибольшее перекрывание электронных облаков  [c.57]

    На рис. 10, а представлена схема электронного строения простой связи, соединяющей два атома водорода в молекуле На на рис. 10, б — схема строения связи, соединяющей атомы углерода и водорода на рис. 10, в — схема строения связи С—С. Связи в приведенных случаях осуществляются за счет -электронов (или гибридизированных [c.40]

    На рис. 34, А представлена схема электронного строения простой связи, соединяющей два атома водорода в его молекуле (Нг) на рис. 34, Б — схема строения связи, соединяющей атомы углерода и водорода на рис. 34, В — схема строения связи С — С. [c.57]

    Строение двойной связи. Электронное строение тс-связи было рассмотрено в гл. 1. Дополнительно следует указать на следующее. Энергия разрыва молекулы по двойной связи С=С равна 611 кДж/моль так как энергия а-связи С—С равна 339 кДж/моль, то энергия разрыва тг-связи равна лишь 611-339 = 272 кДж/моль. тг-Электроны значительно легче а-электронов поддаются влиянию, например, поляризующих растворителей или воздействию любых атакующих реагентов (см. гл. 2). Это объясняется различием в симметрии распределения электронного облака а- и тг-электронов. Максимальное перекрывание -орбиталей и, следовательно, минимальная свободная энергия молекулы реализуются лишь при плоском строении винильного фрагмента и при укороченном расстоянии С=С, равном 0,134 нм, т. е. значительно меньшем, чем расстояние между углеродными атомами, связанными простой связью (0,154 нм). С поворотом половинок молекулы относительно друг друга по оси двойной связи степень перекрывания орбиталей снижается, что связано с затратой энергии. Следствием этого является отсутствие свободного вращения по оси двойной связи и существование геометрических изомеров при соответствующем замещении у атомов углерода (см. далее разд. 8). [c.166]

    Химическую связь в молекуле метана, СН4, удается хорошо объяснить, исходя из представлений о тетраэдрических хр -гибридных орбиталях атома углерода. Эти представления позволяют также объяснить строение этана, СзН , и многих других органических соединений, в которых атомы углерода соединены друг с другом в цепи простыми связями. В этане к каждому из двух атомов углерода присоединено по три атома водорода с образованием ковалентных связей, в которых участвуют три из четырех гибридных хр -орбиталей. Четвертая хр -орбиталь каждого атома углерода используется для образования ковалентной связи с другим таким же атомом. Перекрывание р -гибридных орбиталей двух атомов углерода приводит к возникновению устойчивой связывающей молекулярной орбитали и неустойчивой разрыхляющей орбитали. Связывающая орбиталь, симметричная относительно оси С—С, является а-орбиталью и заполнена двумя электронами со спаренными спинами. [c.565]

    Все устойчивые одноатомные анионы имеют электронное строение соответствующего для данного периода благородного газа, а простейшие катионы имеют электронное строение благородного газа, предшествующего данному периоду (сравните, например, Ыа" и Ке, и Аг и т. д.). В отличие от ковалентной ионная связь не обладает ни направленностью, ни насыщаемостью. Силы притяжения между зарядами не зависят от направления, по которому эти заряды сближаются (отсутствие направленности). Кроме того, два разноименных иона, связанные силами притяжения, не теряют своей способности взаимодействовать с ионами противоположного знака. В этом и проявляется отсутствие насыщаемости у ионной связи. Следствием этой особенности ионной связи является ассоциация [c.72]

    В соответствии с обычными правилами валентности один из атомов кислорода должен присоединяться к атому азота двойной связью, один — семиполярной (координационной) связью и один (несущий отрицательный заряд) — простой ковалентной связью. Существуют три различных способа выполнения этих требований, отличающиеся друг от друга лишь тем, какой из трех атомов кислорода является в нитрат-анионе двоесвязан-ным (два других атома кислорода неразличимы в соответствии со строением семиполярной связи). Однако это предположение оказывается неверным. С помощью рентгеноструктурного анализа нитратов установлено, что длина всех трех связей N—О одинакова и, следовательно, они должны иметь идентичное электронное строение. С этой точки зрения можно говорить лишь [c.22]

    Атомы углерода израсходовали все свои валентные орбитали на образование химических связей, а атомы азота имеют по одной паре неподеленных электронов. Длина связи С—С в молекуле дициана меньше, чем простая связь между атомами углерода (0,154 нм) и приближается к длине двойной связи (0,132 нм). Сказывается дополнительное перекрывание р-облаков по плоскости связи С—С, которые ответственны за л-связи между атомами углерода и азота. По химическому строению дициану аналогичен диацетилен  [c.114]

    Как уже было указано, простая связь (см.) между атомами углерода осуществляется одной парой, а двойная (см.) — двумя парами обобщенных электронов. Одна из электронных пар двойной связи находится в таком же состоянии, как пара электронов, осуществляющая простую связь (а-связь). Вторая же электронная пара осуществляет связь особого характера (л-связь, см,). В соответствии с формулой Кекуле в бензоле должно быть три л-связи. Если выделить пары л-электро-нов этих связей, обозначив их точками, то строение бензола следует представить схемой I  [c.352]


    В данной главе будет рассмотрен простой метод описания ковалентных связей с использованием структурных схем Льюиса. Мы занищем льюисовы структуры для известных молекул и ионов и дадим им объяснение, пользуясь представлениями об обобществлении электронных пар и построении замкнутых валентных оболочек такого типа, как у атомов благородных газов. Затем мы объясним степени окисления атомов в соединениях на основе соображений о неравномерности обобществления электронных пар атомами, обладающими разной электроотрицательностью, после чего перейдем к установлению взаимосвязи между кислотностью некоторых молекул и электронным строением их центрального атома. В последней части главы будет показано, как для предсказания формы молекул используется метод отталкивания валентных электронных пар (ОВЭП). [c.465]

    Строение и свойства двухатомных молекул Ы2, В2, Сг, N2, О2, F2, СО, N0 и др. наиболее просто, наглядно и правильно объясняются методом МО. В молекулах элементов второго периода МО образуются в результате взаимодействия атомных 2s- и 2р-орбиталей участие внутренних ls-электронов в образовании химической связи здесь пренебрежимо мало. Так, на рис. 4.20 приведена энергетическая схема образования молекулы Lia здесь имеются два связывающих электрона, что соответствует образованию простой связи. [c.127]

    Разделение металлов на простые (зр) и переходные (с дефектными с1- и /-оболочками), обусловленное особенностями электронного строения атомов, проявляется и в существенном различии их металлохимических свойств. При этом под металлохимическими свойствами подразумевают не только ионизационные потенциалы и электроотрицательность, атомные радиусы и валентно-электронную конфигурацию изолированных атомов, но и особенности конденсированного состояния, определяющие характер взаимодействия компонентов (расслоение, эвтектика, ограниченный твердый раствор, непрерывный ряд твердых растворов, химические соединения). Несмотря на то что взаимодействие металлов друг с другом (и с неметаллами) осуществляется на атомном уровне, металлохимических свойств изолированных атомов недостаточно для полного описания специфики взаимодействия в конденси]юванном состоянии. Это связано с коллективизацией электронов гри образовании металлических кристаллов. Тем не менее металлохимические свойства элементов позволяют в первом приближении оценить возможность и характер взаимодействия в металлических системах. [c.370]

    Сигма- и пи-связи. Для объяснения физических и химических свойств простого вещества азота необходимо более детально рассмотреть строение его молекулы. Как следует из электронного строения внешнего уровня атома азота (см. 2.7), его химические связи осуществляются тремя неспаренными р-электронами каждого атома р-орбитали имеют форму гантели и направлены вдоль оси пространственных координат. 0 Рх-, Ру- и рг-орбитали. Образование химических связей есть результат перекрывания орбиталей атомов ( 3.1). Образование тройной [c.187]

    Большие изменения претерпели и разделы органической химии. Классическая теория строения элементов А. М. Бутлерова дополнена представлениями о пространственном строении молекул. С новых позиций рассматривается номенклатура и изомерия органических соединений. Особое внимание уделено применению электролной теории в органической ХИМИИ. Дается понятие об электронном строении простых и кратных- связей, бензольного ядра, функциональных групп. Переработана и дополнена глава Углеводы . Дается пред- [c.3]

    Электронное строение простых ковалентных связей. Образование ковалентной химическбй связи происходит при взаимном перекрывании электронных облаков двух атомов, причем связь создается в том направлении, в котором происходит наибольшее перекрывание электронных облаков. Причиной образования ковалентной химической связи двух атомов, как показывают квантовомеханические расчеты, является то, что при сближении атомов до определенного расстояния [c.40]

    Все устойчивые одноатомные анионы имеют электронное строение соответствующего для данного периода благородного газа, а простейшие катионы имеют электронное строение благородного газа, предшествующего данному периоду (сравните, например, N3" и N6, К- и Аг и т. д.). В от личие от ковалентной иогаая связь не обладает ни направленностью, ни насыщаемостью. Силы притяжения между зарядами пе зависят от направления, по которому эти заряды сближаются (отсутствие направленности). Кроме того, два разноименных иона, связанные силами притяжения, не теряют своей способности взаимодействовать с ионами противоположного знака. В этом и проявляется отсутствие насыщаемости у ионной сэязи. Следствием этой особенности ионной связи является ассоциация всех ионов с образованием ионного кристалла, в котором каждый ион окружен ионами противоположного знака. Число ионов противоположного знака, удерживающихся данным ионом на ближайшем расстоянии, получило название координационного числа данного иона. Ионы могут удерживать также и нейтральные молекулы. При большом размере катиона и малом радиусе аниона (соотношение кат "аи > 0 3) вокруг катиона (аниона) координирует 8 анионов (катионов). В результате образуется кристалл так называемой кубической структуры — 8 ионов одного знака располагаются в вершинах куба, в центре которого находится ион противоположного знака (тип СзС1 рис. 14). [c.82]

    Для названия числа пар электронов, которыми данный атом владеет совместно со своими соседями, Лангмюр ввел термин ковалентность, который получил затем огромную популярность. Приведенное уравнение в применении ко всем органическим соединениям углерода, кислорода и водорода ведет, согласно Ланг-мюру, к таким же выводам, что и обычная теория валентности, если учесть, что каждая пара электронов соответствует простой связи. Таким образом, как пишет сам Лангмюр, для органических соединений октетная теория не будет лучшей, чем обычная валентная теория [там же, стр. 897]. Возможно, по этой причине электронному строению органических соединений как в этой статье, так и в следующей той же серии [34], Лангмюр почти не уделяет внимания. Только позднее он применил свои взгляды к азотсодержащим органическим соединениям [35]. [c.93]

    Для того чтобы отразить в формулах строения этот вид взаимного влияния атомов, предложено отмечать смещения тг-электронов изогнутыми стрелками, проведенными, например, от кратной СН = СН связи на простую СН — СН связь или от атома с пеподеленпой парой тг-электронов — на простую связь в направлении смещения  [c.51]

    Фтор. В молекуле фтора, р2, заполнены все орбитальные энергетические уровни (за исключением самого верхнего), показанные в среднем ряду рис. 12-8. Эта молекула имеет всего два нескомпенсированных связывающих электрона, что равносильно образованию простой ковалентной связи. Ее электронное строение описывается конфигуращ1ей [c.529]

    Окраска вещества связана с его способностью поглощать из видимой части спектра (в интервале длин волн от 800 до 400 нм) только некоторые лучи с определенными длинами волн, т. е, с определенной энергией. При этом непогло-щенные лучи спектра, являясь дополнительными к поглощенным, воспринимаются, как видимые, и тело становится окрашенным. Например, если тело поглощает все лучи, кроме красных (620—400 нм), то они, отражаясь, окрашивают тело в красный цвет (800—620 нм) (рис. 35). Поглощение света определяется состоянием электронов в молекуле. Поскольку энергия поглощенных лучей рас.ходуется на возбуждение внешних электронов, состояние которых может быть различным (а- нли я-электроны), то, изменяя химическое строение молекулы красителя, можно в широком интервале изменять величину и характер поглощения света. Для возбуждения электронов, образующих простые а-связи (а-электроны), требуется большая энергия, т. е. лучи с большей энергией. [c.307]

    Книга посвящена новой и актуальной области науки — теории химической связи в твердых телах, которая впервые трактуется как один из разделов общей квантовой химии. В ней рассматривается влияние характера химической связи на особенности электронной (зонной) структуры и прослежены налогии между химической связью в молекулах и твердых телах. Дано краткое изложение основ квантовой химии и зонной теории твердого тела, рассмотрен характер химической связи и электронное строение для простейших типов твердых тел- ковалентных кристаллов элементов IV группы и других полупроводников. [c.304]

    Говоря о строении какой-то системы, обычно имеют в виду некоторую относительно устойчивую пространственную ее конфигура-цию, т. е. взаимное расположение образующих ее частиц, обусловленное существующими между ними связями вследствие присущих этим частицам сил взаимодействия . Однако даже в химических микросистемах говорить о жесткой пространственной структуре не приходится. Уже в атомах мы сталкиваемся с делокализацией электронов, В простых молекулах наряду с делокализацией электронов, приводящей к образованию химических связей, имеет место и делокализация атомных ядер в результате колебаний, в сложных молекулах к этому добавляется взаимное вращение одних частей молекулы относительно других, приводящее к образованию множества конформаций. Последнее особенно явно представлено в молекулах полимеров, с чем связаны многие их фундаментальные свойства. Чем сложнее система (чем больше число образующих ее частиц), тем больше многообразие возможных состояний, в которых она может находиться при нозбужденин, т. е. при получении энергии. Наиболее упорядоченную структуру система имеет в основном состоянии, т. е. в состоянии с минимально возможной энергией. Чем выше энергия возбуждения, представляющая собой энергию относительного движения составляющих систему частиц, тем больше относительные перемещения этих частиц (если движение можно рассматривать классически) или их делокализация (если. движение имеет квантовый характер). Возбужденные молекулы подвержены разного рода колебаниям и внутренним вращениям одних фрагментов относительно других, а при достаточно высоких энергиях химические связи разрываются, и система приобретает качественно иной структурный облик. Роль вышеуказанных структуроопределяющих факторов неизмеримо возрастает для макроскопических систем. [c.122]

    Казалось бы, что метод ВС удобен для объяснения насыщаемости химической связи, направленности валентностей, энергии активации химической реакции. Однако в простом приближении метода ВС возникают большие трудности при описании электронного строения и свойств сопряженных и ароматических соединений, а также неорганических молекул, причем не обязательно сложных. Если же предъявить к ВС-методу современные требования по расчету молекулярньк характеристик и истолкованию спектров молекул, трудности становятся весьма значительпьиУ1и.  [c.87]

    Наиболее простой и в то же время наиболее точной областью квантовой. химии является теория электронного строения соединений с кратными связями (ненасыпк нные системы). При расчете ненасыщенных соединений обычно используют так называемое ст, л-приближение. [c.208]

    Для этого рассмотрим сначала строение более простых веществ — нитрозосоединений Н—N=0. Атом азота имеет пять валентных электронов. На создание связи с органическим радикалом расходуется один из этих электронов (второй электрон свя-зуюп ей пары дает углеродный атом радикала), на образование двойной связи N=0 — два электрона от атома азота, два от атома кислорода. Таким образом, электронное строение соединения К—N=0 можно выразить следующей схемой, в которой валентные электроны атома азота условно изображены точками, а валентные электроны других атомов — крестиками (такой способ изображения выбран только для наглядности на самом деле, конечно, все валентные электроны одинаковы и различить их невозможно)  [c.218]

    Все элементы, располагающиеся слева от границы Цинтля, ха рактеризуются дефицитом валентных электронов, в силу чего в плот поупакованпых кристаллических структурах соответствующих про стых веществ доминирует металлическая связь. При этом граница Цинтля не является границей между металлами и неметаллами а лишь разграничивает элементы с дефицитом и избытком валент ных электронов, что определяет собенности кристаллохимического строения простых веществ. Обращает на себя внимание ряд исключений из правила 8—N. Так, свинец, расположенный справа от границы Цинтля, обладает плотноупакованной кристаллической решеткой с металлическим типом связи. Для последнего представителя УА-группы — висмута — характерно малое различие в межатомных расстояниях внутри слоя и между слоями 0,310 и 0,347 им, что фактически приводит к координационному числу 6. Ни одна из двух известных структур полония также не отвечает правилу К)м-Розери. Объясняется это тем, что с увеличением атомного номера элемента в пределах каждой группы возрастает количество элект- [c.30]


Смотреть страницы где упоминается термин Электронное строение простых связей: [c.270]    [c.215]    [c.224]    [c.562]    [c.207]    [c.409]    [c.125]    [c.2]    [c.86]    [c.2]    [c.55]    [c.362]   
Курс органической химии (1979) -- [ c.40 ]

Курс органической химии (1970) -- [ c.37 ]

Курс органической химии _1966 (1966) -- [ c.57 ]

Органическая химия Издание 4 (1970) -- [ c.45 ]




ПОИСК





Смотрите так же термины и статьи:

Простые строение

Связь простые связи

Электрон связи

Электронное строение

Электронное строение простых и кратных углерод-углеродных связей

электронами электронное строение



© 2025 chem21.info Реклама на сайте