Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектры определение типа

    Инфракрасные спектры. ИК-спектры различных лигнинов отражают сложный характер строения лигнина. Им присущи большое число полос поглощения, их уширение и значительное перекрывание, наличие участков сплошного поглощения из-за наложения полос. В зависимости от природы лигнина, метода его выделения и техники снятия спектра могут происходить сдвиг полос поглощения и изменение их интенсивности и ширины, появляться дополнительные полосы. Теоретический количественный расчет колебательных спектров таких сложных полимеров невозможен, поэтому отнесение каждой полосы поглощения к определенному типу колебаний затруднено. [c.415]


    Установление химического типа белков (и только белков ) является для чисто химических методов принципиально неразрешимой задачей, так как белки не являются классическими объектами органической химии. Они обладают практически неограниченной химической потенцией, и их исключительность состоит не в особой склонности к тем или иным, вполне определенным и характерным только для них химическим реакциям, а, напротив, в их универсальности. Химическое поведение белков характеризуется необозримо широким спектром действия, несопоставимым по своему функциональному многообразию с действиями любого другого класса молекул живой и неживой природы или соединений, синтезированных человеком. Именно благодаря универсальным биохимическим свойствам белков назначение генетического аппарата любого живого организма сведено только к их синтезу. В органической химии аналитические методы основаны на эмпирическом тестировании реакций, на выявлении тех химических особенностей, которые присущи лишь данному типу молекул или атомных групп. Со времени Бутлерова считалось незыблемым, что такому условию удовлетворяют все синтезируемые соединения. Не явились исключением здесь и жиры, углеводы и нуклеиновые кислоты. Поэтому определение типов их молекулярного строения на чисто химической основе не встретило непреодолимых осложнений. Подчеркнем, что сказанное относится ко всем природным и синтетическим полимерам, в том числе и к ближайшим искусственным аналогам белков -полиаминокислотам. Таким образом, предпринятые после Фишера попытки решить с помощью органической химии структурную задачу белков не достигли и не могли достичь цели. История химии белка данного периода скорее свидетельствует об обратном - имевшее место увеличение количества химических данных о белках сопровождалось ростом неопределенности в понимании их химического строения. Изучение на такой основе белков не приближало, а, напротив, уводило в сторону от решения этой типичной по своей постановке для синтетической органической химии задачи. [c.65]

    Разработанные ранее масс-спектрометрические методы анализа нефтяных фракций дают сведения о их групповом составе и позволяют установить наиболее типичные молекулярные структуры внутри любой группы соединений, рассматриваемой как один тип. Эта задача решается снятием и анализом полученных масс-спектров, сопоставлением качественных и количественных данных масс-спектров индивидуальных соединений и узких фракций со спектрами выделенных из нефтяного продукта концентратов, содержащих в основном определенный тип соединений. Снятие и обработка масс-спектров усложняются по мере утяжеления нефтяного сырья, каким являются изучаемые в данной работе экстракты остаточной нефти. В связи со сложностью состава и широким диапазоном изменения молекулярной массы, с преобладанием высокомолекулярной части масс-спектральный анализ не позволяет так определить количественное содержание групп по определенным структурным признакам, чтобы разница масс-спектров соедине- [c.59]


    Определение типа замещения в ароматических производных по колебательному спектру поглощения [c.65]

    При анализе бензинов [183] предусматривается исследование масс-спектров образца бензина до и после удаления ненасыщенных соединений. Первой стадией анализа является установление распределения углеводородов каждой группы по молекулярным весам, второй — определение типов углеводородов, [c.141]

    Итак, с помощью структурного анализа возможно определение а) периодической атомной структуры кристалла б) магнитной структуры магнетиков в) динамических нарушений (фонон-ных и магнонных спектров) г) типа и распределений статических структурных дефектов в реальных кристаллах д) структурного механизма фазовых переходов и структурных особенностей метастабильных состояний в твердых телах е) ближнего порядка в аморфных телах и в жидкостях ж) формы и строения частиц в растворах з) структуры газовых молекул и) фазового состава вещества. [c.15]

    В качестве примера на рис. 169 приведен спектр паров этилового спирта и дано отнесение полос к определенным типам колебаний атомных групп. Такие отнесения почти всегда можно сделать для коротковолновой области. Но при переходе к более длинным волнам подобная интерпретация спектра становится все более затруднительной, так как появляются скелетные колебания и большое число плохо изученных деформационных колебаний отдельных атомных групп. [c.293]

    ИК-спектры поглощения ненасыщенных связей довольно характеристичны. Многие из характеристических частот двойных связей находятся в области частот валентных колебаний С—О и С—С, так что наличие полосы поглощения с характерным значением частоты еще нельзя считать доказательством присутствия двойной связи определенного типа, однако отсутствие соответствующей полосы поглощения однозначно свидетельствует об отсутствии непредельных групп. [c.328]

    АТОМНЫЕ СПЕКТРЫ ИСПУСКАНИЯ. При нагревании до достаточно-высокой температуры элемент начинает испускать свет. Если испускаемый свет пропустить через призму, то выходящий свет обычно не дает непрерывного спектра (например, типа радуги). Вместо этого наблюдаются вполне дискретные цветные линии ( линейчатый спектр ), соответствующие характеристическим длинам волн. Для того чтобы объяснить это явление, Нильс Бор, ученик Резерфорда, сконструировал модель атома, в которой электрон движется по круговым орбитам вокруг ядра. По Бору, число этих орбит ограниченно, и они соответствуют определенным уровням энергии ( квантовым уровням ). Иными словами, электронам запрещено существование вне этих орбиталей, и об их энергии говорят, что она квантована.. Перемещение электрона с орбиты с низкой энергией на орбиту с высокой энергией требует поглощения определенного количества ( кванта ) энергии. При переходе электрона с высокоэнергетической орбиты на низкоэнергетическую излучается точно определенный квант энергии. Последняя особенность служит причиной появления ярких спектральных линий. [c.15]

    Успех спектроскопии ЯМР в химии в первую очередь обусловлен тем, что информация, получаемая из спектров ЯМР, близка образу мышления химиков. Отнесение спектральных областей к определенным типам протонов, в различных типах связи, например, ароматических и.ли олефиновых , а также мультиплетность сигналов, дают информацию, которая может быть переведена на структурный или стереохимический язык легче, чем информация, получаемая из инфракрасных и ультрафиолетовых спектров. Особое значение имеет тот факт, что симметрия молекулы также находит отражение в спектре, вследствие высокой чувствительности параметров ЯМР к молекулярному окружению ядра. [c.208]

    Спектр ЯМР- С даже сложной органической молекулы сравнительно редко не дает отдельных хорошо разрешенных сигналов для каждого типа атомов углерода в молекуле (рис. 8.9). Например, типичный спектр шириной 200 м.д. (с полной спиновой развязкой от протонов) будет обычно состоять из простых линий, каждая из которых будет соответствовать определенному типу атомов углерода (рис. 8.9). Обычно спектр ПМР не имеет такого хорошего разрешения, как спектр углеродного резонанса поэтому во многих случаях спектр ПМР не дает такого количества информации о структуре, как спектр ЯМР. Это только одно из преимуществ, на котором можно показать огромные возможности спектроскопии ЯМР- С при структурном органическом анализе. [c.502]

    Излучатель предназначен для преобразования энергии накачки (перевода гелий-неоновой смеси 3 в активное состояние) в лазерное излучение и содержит оптический резонатор, представляющий собой в общем случае систему тщательно изготовленных отражающих, преломляющих и фокусирующих элементов, во внутреннем пространстве которого возбуждается и поддерживается определенный тип электромагнитных колебаний оптического диапазона. Оптический резонатор должен иметь минимальные потери в рабочей части спектра, высокую точность изготовления узлов и их взаимной установки. В лазере, показанном на рис. [c.227]


    Форма импульса звуковой волны примерно соответствует форме импульса света. При использовании определенного типа лазеров поэтому можно, изменяя ширину импульса света по Фурье, возбудить требуемый ультразвуковой спектр [1387]. [c.169]

    В ИК-спектре поглощения MgF2 обнаружены три полосы 240, 447 и 870 см . Последняя полоса имеет максимальную интенсив-ност , средняя — минимальную. Молекула MgF2 имеет симметрию Сг ,. Сдела11те отнесение полос поглощения к определенным типам колебаний. [c.43]

    В ИК-спектре поглощения Sn l обнаружено три полосы в раз-, ными интенсивностями 104 (сл), 129 (ср), 403 (с) см- . (В скобках сл — слабая, ср — средняя и с — сильная.) Сделайте отнесение колебаний к определенному типу и определите вырождение каждого колебания. [c.41]

    ИК-спектры можно использовать для определения типа нефтей. Мерой содержания аренов служит п/[Ощадь (Si) гголосы v —- [c.97]

    В основу метода определения типов углеводородов в слож1Из1х смесях были положены корреляции в масс-спектрах углеводородов различной структуры, стеиепи ненасыщенности и молекулярного веса. [c.140]

    Спектроскопия играет важную роль при определении типа нитрил-металл взаимодействия. Эффект координации в полосах (СН) ИК-спектров нитрильных комплекхов традиционно используются для определения их стр> ктуры. Считается, что сдвиги к высоким частотам определяют концевую координацию нитрилов, а сдвиги к низким частотам характеризуют боковую координацию нитрилов. Однако, недавно стало очевидным, что концевая координация может являться причиной сдвига у(СМ) как к высшим, так и к низшим частотам. [c.149]

    При работа с ИК-спектром исследуемого вещества необходимо иомнить, что попытки сделать отнесение каждой полосы к определенному типу колебаний на основании только значений табличных характеристичных полос не корректны и могут привести к ошибочным заключениям. Так, в приведенном на рис. 83 спектре халкона (фенилстирилкетона) можно строго отнести только интенсивную полосу с частотой 1680 см , характерную для валентных колебаний сопряженной С=0-группы, и полосу 1580 см соответствующую скелетным колебаниям бензольного кольца. Отнесение полос в области деформационных и валентных колебаний spj —Н для этого соединения затруднено, так как на полосы, обусловленные колебаниями этих связей ароматического кольца, накладываются полосы алифатической группировки СН=СН. [c.279]

    Электронные спектры поглощения — один из основных физических методов исследования, к которому обращается иолуэмпириче-ская квантовая химия как к источнику экспериментальных данных для подбора параметров и проверки точности расчета. Вместе с тем интерпретация электронных спектров (отнесение наблюдаемых полос поглощения или испускания к определенным типам переходов в молекуле, анализ перераспределения электронной плотности при возбуждении и т. д.) нуждается в проведении квантовохимических расчетов. Эта взаимосвязь и привела к тому, что электронные спектры поглощения сопряженных систем являются наиболее точно рассчитываемой с помощью метода ППП наблюдаемой величиной. [c.289]

    Ауверс составил таблицы стандартных значений удельных экзальтаций для определенных типов структур, которые в течение многих лет служили химикам-орга-пикам иодсгюрьем для сгруктурной классификации химических соединений. Б настоящее время для решения структурных задач все чаще применяются ИК-спектро-сконнческие методы, и таблицы Аувсрса сейчас приобрели уже исторический интерес. [c.223]

    Если рассмотреть спектры дизамещенных бензолов с двумя одинаковыми заместителями с точки зрения симметрии, то можно сделать однозначное отнесение структуры без детального анализа спектра, руководствуясь лишь отнесением спектра к определенному типу. Так, для орто-производного 106 наблюдается спектр типа АА ВВ, тогда как для мета- и мара-производных 107 и 108 наблюдаются спектры типа АВгМ и А4 соответственно. [c.209]

    Методы отнесения сигналов. Сейчас для отнесения резонансных сигналов экспериментатор имеет большой выбор методов. Большинство из них использует определенные типы развязки от протонов. Например, после записи обычного спектра с широкополосным подавлением Н обычно измеряют спектр неполного двойного резонанса. Как уже обсуждалось в разд. 2.8 гл. IX и как показано на рис. IX. 20, так можно различить в спектре первичные, вторичные, третичные и четвертичные атомы углерода. Кроме того, возможность импульсной развязки открывает путь для наблюдения констант Н, С. По крайней мере прямые константы через одну связь обычно находятся с точностью, достаточной для использования при отнесении, даже если совершенно корректное определение этих параметров и невозможно без проведения полного анализа спектра (см. гл. V). Это требование в особенности необходимо выполнять при определении меньших констант спин-спинового взаимодействия более чем через одну связь, даже несмотря на то, что многие неразвязанные спектры кажутся спектрами первого порядка. Тем не менее данные об изменениях /( С, Н) в зависимости от строения, которые позднее мы обсудим детально, представляют большую ценность для целей отнесения. Например, в циклопропане /( С, Н) составляет 161 Гц, а в метане — только 125 Гц. Поэтому метиленовые группы трехчленных циклов легко распознать по большому триплетному расщеплению их сигнала С. [c.392]

    Результаты спектрального изучения молекулярной структуры сахарозы. Общим и наиболее широко используемым ме< годом определения типа и положения заместителей, а также конформации производных сахарозы является ЯМР-спектро-скопия [83, 84]. В ПМР-спектре октаацетата сахарозы константы спин-спинового взаимодействия протонов а-о-глюко-пиранозного фрагмента (71,2 = 3,7 /2,3= 10,5 Уз.4=9,5 Л.5 —9,7 Гц) подтверждают Сркоиформацию цикла (85,86]. Соответственно константы протонов -о-фруктоф/ранозиого фрагмента (Лу, 4 = 5,5 = 5, Гц) согласуются с конформацией, в которой атомы С-2, С-3, С-5 и 0-5 лежат в одной плоскости, а атом углерода С-4 выведен из этой плоскости. [c.41]

    Активность лейцинаминопептидазы, выражаемая числом молей субстрата, расщепляемых в минуту весовой единицей фермента, значительно выше активности карбоксипептидазы, которая в свою очередь активнее папаина—одной из наиболее эффективных протеиназ [297]. Вследствие высокой активности лейцинаминопептидазы даже менее чувствительные связи в полипептидных цепях могут гидролизоваться с заметной скоростью. Кроме того, специфичность действия лейцинаминопептидазы не ограничивается остатками определенного типа, как в случае карбоксипептидазы. Так, фермент освобождает полуцистиновые остатки из пептидных связей. Пролин и аминокислоты с полярными боковыми группами также отщепляются, хотя скорости гидролиза могут быть небольшими. В некоторых случаях подобный широкий спектр активности выгоден, но он увеличивает трудности при попытках установить последовательность сцепления аминокислот на основании данных о скорости отщепления аминокислот при разрыве пептидных связей [149]. [c.236]

    Размораживание каждого типа релаксаторов можно рассматривать как релаксационный переход, сопровождаемый изменением температурного хода экстенсивных характеристик системы (объема, внутренней энергии, энтропии и т. д.). При этом вторые производные гельмгольцевой энергии (теплоемкость при постоянном давлении, коэффициент теплового расширения и др.) испытывают при температуре перехода, если и не скачок, то резкое изменение, как это показано на рис. VIII.4, где показан отрезок релаксационного спектра с одним максимумом. Подобные спектры, содержащие несколько максимумов, для некоторых конкретных полимеров будут приведены позднее. Такие спектры можно приближенно считать дискретными и каждому максимуму сопоставлять определенный тип релаксаторов. [c.180]

    Для определения строения природных фурокумаринов большое значение имеют спектральные исследования. Для идентификации заместителей особенно важна спектроскопия ЯМР при определении типа замещения могут быть полезны лантанидные сдвигающие реагенты [6]. Важным аналитическим признаком являются констан--ты дальнего взаимодействия между протонами [7]. В масс-спектрах простых фурокумаринов наблюдаются интенсивные пики молекулярных ионов. Основное направление фрагментации обычно включает потерю СО пироновым кольцом этому предшествует (или протекает одновременно) отщепление метильного радикала. Фурановый цикл не затрагивается до последующих ступеней фрагментации [8, 9]. [c.179]

    ИК-спектры можно использовать для определения типа нефтей. Мерой содержания аренов служит площадь (50 полосы г=1610 СМ , обусловленной колебаниями связей С = С ароматического кольца, а мерой содержания алканов — площадь (5г) полосы V = 725 см , характеризующей колебание связей С—С в длинных цепях. Отношение А =5]/52 принято за показатель ароматизированности нефтей. Нафтеновые структуры по ИК-спектрам не выявляются. Для метановых нефтей А < 0,35, метано-нафтеновых 0,3 Л 0,5, нафтеновых 0,6 < Л < 1,2, нафтено-ароматических 1,2 < Л < 3,5. [c.141]

    Отнесение резонансных линий к определенному типу аминокислот основывается на том, что в аминокислотных остатках большинство протонов связаны между собой косвенным спин-спиновым взаимодействием. В то же время спин-спиновое взаимодействие между протонами двух соседних аминокислот очень слабое, поскольку между ближайшими парами протонов На-протоном и амидным, имеются четыре связи (см. рис.3.3), т.е. каждый аминокислотый остаток протеина можно рассматривать как изолированную спиновую систему. Так что для каждой аминокислоты имеет место типичная картина спин-спинового взаимодействия, наблюдаемая в двумерных спектрах ЯМР. Рис.3.25 дает схематическое представление о косвенном спин-спиновом взаимодействии для валинового остатка, соответствующее методам OSY и R T. Такая же картина должна наблюдаться и в реальном экспериментальном спектре (рис.3.26). Интерпретация спектра осложняется не только тем, что неизвестны точные значения химических едвигов для искомых резонансных линий, но и тем, что не может быть проведено надежное отнесение отдельных кросс-пиков в спектре. Это может быть также связано и со слишком большой шириной резонансных линий кросс-пиков, так как уширение линий сопровождается также уменьшением их амплитуды, и часто рассматриваемые линии сливаются с фоном. Поскольку ширины линий, которые в основном определяются временем поперечной релаксации и скоростью химического обмена, заранее неизвестны, то отсутствует уверенность в том, что проведено правильное отнесение линий. Особенно существенно на отнесении линий сказывается ширина линий в спектрах, полученных по методу OSY, в которых пики в подспектре расщепляются на пики с отрицательными и положительными знаками, так что полный интеграл пиков кросс-мультиплета равен нулю. Чем больше ширины линий, тем менее заметны эти линии в спектре. Это проявляется тем нагляднее, чем ближе располож ены одна к другой линии различных знаков, что пршсходит в том сл уча е, [c.132]

    Существуют два принципиально различных подхода, позволяющих провести расшифровку спектров. Сюда следует отнести возможность использования всей имеющейся информации для расщифровки экспериментальных спектров. Если известны физические взаимодействия, то существует возможность проведения моделирования любого двумерного эксперимента в случае, если достаточно хорошо проведено отнесение спиновой системы к определенному типу, гравда, при этом релаксационные процессы описываются лишь весьма приближенно. Спиновая система определяется исходя из принципиальной структуры аминокислот. Соответствующие константы спин-спинового взаимодействия и химические сдвиги являются при это свободно варьируемыми параметрами, которые согласовываются со значениями, определяемыми экспериментально, и затем могут быть использованы для полного описания спектров. Однако на практике этот метод требует слишком много времени. Можно несколько улучшить этот подход, если провести серию специальных дополнительных экспериментов. На рис. 3.28 показано, что таким методом, по крайней мере для небольших молекул, а о [c.136]

    В табл. 7 приведены основные спектроскопические характеристики наблюдавшихся в кварце методом ЭПР центров непримесной природы, получившие в литературе название дефектов -типа. Связь между полосами оптического поглощения и спектрами ЭПР дефектов определенного типа зачастую неоднозначна, поскольку многие работы по изучению оптического поглощения проводились без ЭПР-измерений или ЭПР-исследова-ния — без оптических измерений. [c.147]

    При взаимодействии быстродвижущихся электронов с атомами вещества возникает рентгеновское излучение, которое имеет спектры двух типов характеристические и тормозные. Особенность характеристических рентгеновских спектров заключается в том, что атомы каждого химического элемента, независимо от того, в какой химической форме они находятся, имеют свой, вполне определенный спектр. Тормозные спектры возникают вследствие торможения быстрых электронов в электромагнитном поле атомов вещества. Непрерывный рентгеновский спектр тормозного излучения ограничен со стороны малых длин волн некоторой наименьшей длиной волны Ятш, называемой коротковолновой границей тормозного спектра. Появление границы связано с тем, что вся энергия, которую приобретает электрон в электромагнитном поле рентгеновской трубки, излучается в виде кванта при едином акте торможения. Если Хпчп выразить в нм, а потенциал фо на рентгеновской трубке в кВ,то [c.214]


Смотреть страницы где упоминается термин Спектры определение типа: [c.35]    [c.43]    [c.140]    [c.71]    [c.145]    [c.450]    [c.453]    [c.236]    [c.494]    [c.435]    [c.134]    [c.316]   
Ядерный магнитный резонанс в органической химии (1974) -- [ c.87 ]




ПОИСК





Смотрите так же термины и статьи:

Количественные определения типов связи в каучуках по спектрам

Определение типа замещения в ароматических производных по колебательному спектру поглощения

Спектров типы



© 2024 chem21.info Реклама на сайте