Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение к химически реагирующим системам

    Согласно первому предположению (возможности применения статистики Максвелла — Больцмана к реагирующей системе) константа скорости элементарной реакции А-ЬВ—>-С+.. ., протекающей при отсутствии химического равновесия, мало отличается от константы скорости того же процесса, вычисляемой из предположения о наличии химического равновесия как с конечными, так и с промежуточными продуктами, представляющими собой активный комплекс. Поэтому выражение (V, 13) можно записать так  [c.147]


    Рассмотренные здесь вопросы влияния концентраций реагирующих веществ и общего давления на положение химического равновесия суть частные случаи применения так называемого принципа Ле Шателье — Брауна. Согласно этому принципу при воздействии на равновесную систему любого внешнего фактора равновесие в системе смещается в таком направлении, чтобы уменьшить воздействие этого фактора. [c.93]

    Метод Монте-Карло получил широкое применение для решения разнообразных задач кинетической теории газов. Одним из перспективных подходов к решению уравнения Больцмана лля многокомпонентного химически реагирующего газа является метод нестационарного статистического моделирования. Этот подход основан на результатах Каца [296] о существовании статистических моделей, асимптотически эквивалентных уравнению Больцмана. Суть методики состоит в построении случайного процесса, моделирующего решение кинетического уравнения. Вместо непосредственного решения уравнения Больцмана построенный случайный процесс многократно моделируется на ЭВМ, и по полученной статистике определяется искомая функция распределения. В работа) [70, 71] с помощью метода нестационарного статистического моделирования рассматривались процессы максвеллизации смеси газов, электронное возбуждение атомов, установление ионизационно-рекомбинационного равновесия. Метод предъявляет не слишком высокие требования к памяти и быстродействию ЭВМ, однако с его помощью, по-видимому, невозможно описывать кинетические процессы с существенно различными характерными временами и системы с большим числом уровней. В монографии Г. Берда [18], посвященной моделированию кинетических процессов методом Монте-Карло, приведен ряд полезных программ для ЭВМ. [c.204]

    Б. Применение к химически реагирующим системам [c.44]

    Химические реакции — это второй этап химико-технологического процесса. В реагирующей системе обычно происходит несколько последовательных (а иногда и параллельных) химических реакций, приводящих к образованию основного продукта, а также ряд побочных реакций между основными исходными веществами и примесями, наличие которых в исходном сырье неизбежно. В результате кроме основного образуются побочные продукты (материалы, имеющие народнохозяйственное значение) или же отходы и отбросы производства, т. е. продукты реакций, не имеющие значительной ценности и не находящие достаточного применения в народном хозяйстве. Побочные продукты и отходы производства могут образоваться при основной реакции наряду с целевым продуктом, а также вследствие побочных реакций между основными исходными веществами и примесями. Обычно при анализе производственных процессов учитываются не все реакции, а лишь те из них, которые имеют определяющее влияние на количество и качество получаемых целевых продуктов. [c.34]


    При исследованиях механизма различных химических реакций и процессов радиоактивные индикаторы нашли особенно широкое применение. Обычно применяемые в химии уравнения реакций чаще всего определяют только начальное и конечное состояние реагирующей системы и не дают никаких сведений об истинном течении процесса. Даже самые простые реакции большей частью идут через ряд быстро чередующихся ступеней с образованием неустойчивых или короткоживущих промежуточных продуктов, которые 232 [c.232]

    Многие молекулярные свойства, интересные с точки зрения химии, зависят от разности энергий. Например, спектральные переходы определяются разностью энергий между различными состояниями одной и той же молекулы. Теплоты реакций включают разности полных энергий реагентов и продуктов. Расчетное определение молекулярной структуры сводится к вычислению полной энергии молекулы как функции ее варьируемых структурных параметров (длин связей и валентных углов) и нахождению минимума энергии. Расчеты энергий активации химических реакций включают вычисление полной энергии реагирующей системы вдоль пути реакции. В любых таких приложениях погрешности вычисления абсолютных энергий, как правило, компенсируют друг друга, если индивидуальные расчеты выполняются с одинаковой совокупностью приближений. Это дает возможность получать результаты для разностей энергий, которые имеют большую абсолютную точность, чем полные энергии в индивидуальных расчетах. Вычислительная квантовая химия позволяет получать полезные результаты во всех упомянутых выше областях применения, несмотря на все используемые ею приближения. Б приложении 3 приведены характерные примеры результатов, основанных на проведении неэмпирических расчетов. [c.235]

    Общая скорость технологического процесса мол<ет лимитироваться скоростью одного М3 трех составляющих элементарных процессов, который протекает много медленнее других, но так, что скорости отдельных процессов соизмеримы. Если наиболее медленно идут химические реакции и они лимитируют общую скорость, то говорят, что процесс происходит в кинетической области в этом случае технологи стремятся усилить именно те факторы (концентрация исходных веществ, температура, применение катализаторов и пр.), которые влияют особенно на скорость реакции. Если общую скорость процесса лимитирует подвод реагентов в зону реакции или отвод продуктов, то говорят, что процесс происходит в диффузионной области, и стремятся увеличить скорость диффузии путем перемешивания (турбулизации реагирующей системы), повышения температуры и концентраций, перевода системы из многофазной в однофазную и т. д. Если скорости всех элементов, составляющих технологический процесс, соизмеримы (почти одинаковы), 10 необходимо воздействовать прежде всего такими факторами, которые наиболее сильно ускоряют как диффузию, так и реакции. [c.52]

    Задача химической промышленности — наиболее полное и целесообразное использование исходного сырья путем нревраш,епия в определенные химические соединения, которые могут быть как промежуточными, так и конечными продуктами технологического процесса. Поскольку химические реакции связаны с изменением расположения атомов в молекулах исходных веш,еств по сравнению с расположением тех же атомов в молекулах продуктов реакции, то перед химиком возникает задача осуществить химическое превращение в таких условиях (давление, температура и т. д.), которые способствовали бы преимущественному протеканию рассматриваемой реакции с образованием желаемых продуктов. Тщательный термодинамический анализ реагирующей системы часто помогает выяснить необходимые условия получения того или иного продукта, позволяет установить, какие реакции невозможны, и привлекает внимание к осуществимым реакциям. Целесообразность такого термодинамического анализа определяется наличием достаточно надежных основных термодинамических свойств веществ, однако даже при отсутствии всех необходимых данных часто оказывается возможным, опираясь на закономерности в термодинамических свойствах веществ, сделать некоторые обоснованные предположения о продуктах реакции. По мере накопления соответствующих данных применение термодинамического анализа в современных исс.ледованиях получает все более широкое распространение. [c.173]

    Термодинамическая теория окислительного потенциала рассматривает окислительный электрод как индифферентный по отношению к раствору проводник электрического тока [6—12]. Поэтому в качестве электрода может быть применен любой, не взаимодействующий в данных условиях с раствором металл платина, золото, вольфрам, ртуть и т. д. Следствием термодинамической теории является деление систем на обратимые , в которых потенциал может быть измерен, и необратимые , в которых лотенциал измерить невозможно. Критерием обратимости или необратимости системы считается возможность или невозможность измерения в ней окислительного потенциала [7]. Величина окислительного потенциала в обратимой системе должна зависеть не от материала и состояния поверхности электрода, а только от концентрации и природы окисленных и восстановленных компонентов реакции [11]. Термодинамическая теория справедлива при условии достижения равновесия между окислительно-восстановительной системой и электродом. Термодинамическая теория не может, однако, характеризовать систему до наступления равновесия. Известно вместе с тем, что в слабых, т. е. имеющих слабую тенденцию вызывать потенциал на электроде, системах время установления потенциала может исчисляться не только часами, но и сутками [7—9, 17, 18]. К слабым системам относятся, как правило, системы молекулярно-водородные и в особенности кислородные. Впервые вопрос о кинетическом характере окислительного потенциала рассмотрен в работах Н И. Некрасова [19], где показано, что в случае достижения предельного потенциала в неравновесных системах или окислительного потенциала в равновесных, но медленно реагирующих системах, величина его определяется кинетическими факторами. Можно, однако, показать, что кинетические факторы имеют существенное значение не только при измерении окислительного потенциала в слабых системах — регулируя соответствующим образом кинетику установления потенциала, в принципе можно измерить окислительный потенциал в любых химически обратимых системах. [c.169]


    Распространение микрокомпьютеров способствовало расширению использования ЭВМ в сфере обучения, начиная от отдельных проектов, в которых исследователи испытывали технические возможности машин и изучали реакцию студентов, до подобной волне прилива активной деятельности, проверяющей способность обучающих реагировать на перемены. Особую роль в этих происшедших переменах сыграло химическое образование. Химия как учебная дисциплина вполне подходит для эффективного применения компьютеров в системе обучения. Лабораторный практикум, являющийся неотъемлемой частью химического курса обучения, по своей сути близок к целям и содержанию работы обучающих модулей, позволяющих студенту усваивать теорию через моделирование эксперимента. В обоих случаях сама методика обучения является частью введения в предмет. Кроме того, часто преподаватели химии широко применяют компьютеры для исследовательской работы. Для этих преподавателей использование компьютеров в процессе обучения является просто еще одной сферой их применения, методика которого уже хорошо знакома. [c.84]

    Степень превращения в разных реакциях удобнее всего рассматривать в связи с распределением энергии между исходными и конечными веществами. Этот путь возможен главным образом на основе применения химический термодинамики. Степень превращения оценивают, сравнивая количества исходных и конечных веществ. Это сравнение производится после того, как система (реакционная смесь) реагировала в течение времени, достаточного для прекращения реакции. В этих случаях говорят, что система пришла в равновесие относительно данной реакции. [c.15]

    Образующийся свободный радикал инициирует дальнейший распад полисульфидных связей в полихлоропренполисульфиде. Процесс деструкции продолжается до образования стабильных связей К—5—К. В отсутствие тиурама образующиеся полимерные радикалы реагируют по двойной связи или а-метиленовой группой других полимерных молекул, вызывая структурирование полимерных цепей. Процессы деструкции под влиянием тиурам-полисуль-фидных связей происходят частично при щелочном созревании латекса и значительно более интенсивно при вальцевании или термопластикации, с одновременным взаи1 одействием образующихся полимерных радикалов с тиурамом по вышеуказанной схеме. Применение указанной системы регуляторов обеспечивает получение низкопластичного полимера, легко подвергающегося выделению из латекса методом зернистой коагуляции с образованием ленты на лентоотливочной машине, механически достаточно прочной в процессах формования, отмывки и сушки. Полимеры, полученные в присутствии серы и содержащие тиурам, легко пластицируются в процессе механической обработки, особенно в присутствии химически активных пластицирующих соединений (дифенилгуанидина совместно с меркаптобензтиазолом и др.) [24]. По мере израсходования тиурама или его разложения при нагревании или длительном хранении преобладают процессы структурирования. [c.374]

    Уже сейчас изучено множество химических систем и методов генерации плазмы. Без сомнения, в будущих работах будут исследоваться и другие реагирующие системы. В дополнение к работам в дугах постоянного тока можно ожидать более широкого применения высокочастотных и сверхвысокочастотных генераторов плазмы для изучения химических синтезов. [c.222]

    Во многих случаях рекомендации, основанные на различных технологических принципах, подсказывают направления технических способов проведения процесса, противоречивые с физико-химической точки зрения. Они могут привести также к решениям, которые не будут наиболее эффективными. Например, всегда нужно использовать максимально развитую поверхность контакта двух реагирующих фаз. Скорость превращения пропорциональна величине этой поверхности, и мы стремимся к возможно более быстрому проведению процессов. Однако в случае значительного теплового эффекта реакции сильно развитая поверхность контакта может привести к излишнему перегреву системы и работе при тем-. пературах, положение равновесия при которых не будет выгодным. Аналогично, применение теплового противотока может невыгодно влиять на равновесие реакции, качество получаемого продукта или стойкость конструкционных материалов оборудования. Поэтому противоток используют только тогда, когда он обеспечивает наиболее эффективный теплообмен. [c.346]

    Обмен энергией между изучаемой системой и внешней средой описывают законы, которые изучает термодинамика. Применение законов термодинамики в химии позволяет решить вопрос о принципиальной возможности различных процессов, условиях их осуществления, определить степень превращения реагирующих веществ в химических реакциях и оценить их энергетику. [c.89]

    В связи с биологическими применениями особый интерес представляет разыскание гомогенных химических колебаний в жидкой среде. Возможность наблюдения подобных явлений в замкнутой системе облегчается, если речь идет о колебаниях гомогенного катализатора, присутствующего в системе в малой концентрации. Пусть каталитическая реакция идет в две стадии в первой из них катализатор реагирует с исходным веществом и теряет свою активность, а во второй стадии происходит регенерация катализатора. При простой кинетике обеих стадий устанавливается стационарная концентрация активного катализатор а. Если же кинетика оказывается сложной, то возможна запаздывающая регенерация катализатора, что приведет к колебательному изменению его концентрации. [c.443]

    Применение принципа рециркуляции — эффективный технологический прием, позволяющий интенсифицировать химический процесс путем увеличения концентраций реагирующих веществ за счет удаления из системы продуктов реакции. [c.256]

    Используемые для расчетон химических равновесий термодинамические соотношения, как легко видеть из приводимых в учебниках термодинамики выводов (см., например, [1, 2, 4]), основаны на применении уравнения состояния идеальных газов к описанию свойств реагирующих газовых смесей. Поэтому понятно, что применимость этих уравнений ограничивается только теми случаями, когда газовые смеси подчиняются уравнению состояния идеальных газов. В применении к реальным системам эти уравнения могут привести 1г некоторым неточностям, величина которых будет тем больше, чем больше отличаются свойства реагирующих веществ от свойств идеальных газов. [c.156]

    Дедуктивно-эвристяческий метод синтеза механизмов сложных химических реакций. Упомянутый метод построения гипотетических механизмов химических реакций, использующий в своей основе стехиометрический анализ реагирующей системы, достаточно прост для программирования, требует применения только математического аппарата линейной алгебры и позволяет при небольших затратах машинного времени рассчитать на ЭВМ всевозможные элементарные реакции. При этом он не дает возможности (без его существенного усложнения) отражать изомерные свойства реактантов. Так как явление изомерии имеет место в любой области химии (органика, биоорганика, неорганика и т. п.), оно должно также учитываться при синтезах механизмов сложных химических реакций. [c.173]

    Широкое применение в химической кинетике пашел метод изучения лабильных промея уточных веществ, заключающийся во введении в зону реакции различных добавок (метод акцепторов). Этот метод был применен М. Полани с сотр. [329] в реакциях атомов натрия с алкилгалогепидами RX (X = С1, Вг). Добавляя пары иода к реагирующей смеси, в которой по реакции Na + НХ == NaX + R образуются радикалы R, по образованию иодалкила в результате реакции R4-J2 = R,I + J можно установить наличие радикалов R в системе (см. также [193]). [c.27]

    Если вернуться к реакции синтеза аммиака, выражаемой уравнением (1.1), следует напомнить об ее обратимости и зависимости равновесных концентраций реагентов от условий, т. е. в первую очередь от температуры (Г) и общего давления (Р). В табл. 1 приведены равновесные концентрации аммиака (в мольных процентах) для двух температур и трех давлений, полученные Ф. Габером в начале текущего века. Они показывают, что равновесная концентрация аммиака увеличивается с давлением. При повышении давления от 1 до 600 атм это увеличение характеризуется отношениями ПО (400° С) и 360 (500° С). Таким образом, синтез аммиака следует проводить при возможно более высоком давлении. Как известно, это требование соблюдается в методах синтеза, применяющихся в промышленности, где давления достигают 1000 атм. С другой стороны, повышение температуры уменьшает равновесную концентрацию (выход) аммиака. Следовательно, его синтез надлежало бы проводить при возможно более низкой температуре, у вторую рекомендацию, вытекающую из изучения тепловых явлений и термических свойств, не удается использовать в полной мере. Дело в том, что приведенные в таблице данные характеризуют равновесное, т. е. конечное, состояние реагирующей системы и ничего не говорят, за какое время это состояние может быть достигнуто. Фактор времени учитывается в другом разделе физической химии — химической кинетике. Она подсказывает, что скорость химической реакции очень быстро уменьшается с понижением температуры. Поэтому может оказаться, что при какой-то температуре хороший выход может быть достигнут за слишком продолжительное время, скажем за миллиард лет. С другой стороны, согласно данным кинетики скорость реакцин можно увеличить применением катализаторов. В итоге комплексного физико-химическоге изучения, реакцию синтеза аммиака проводят при температуре 450— —500° С на катализаторах, состоящих из металлического железа, содержащего некоторые активаторы (промоторы). [c.6]

    Применение численного метода для исследования неравновесных потоков многокомпонентных газовых смесей. Изложенный численный метод служит для интегрирования системы нелинейных, существенно взаимосвязанных между собой дифференциальных уравнений в частных производных. Например, такими являются системы уравнений и граничных условий химически неравновесных многокомпонентных пограничного и вязкого ударного слоев, к такому же виду приводится и параболизованная система уравнений Навье-Стокса, описывающая течение многокомпонентной химически реагирующей смеси газов. [c.198]

    Химические реакции в течение долгого времени были привлекательным объектом для квантовой химии. Особенно следует отметить замечательные успехи теории молекулярных орбиталей (МО-теория) в интерпретации большого числа химических реакций и предсказании для них ориентации и стерео направленности. В терминах молекулярных орбиталей были рассмотрены фундаментальные проблемы химических реакций различного типа как внутримолекулярных, так и межмолекулярных. Широкое применение среди химиков-органиков находят в настоящее время индексы хи-мтеской реакционной способности для я- и (т-электронных систем, предложенные на основе нескольких реакционных моделей [1—5]. Правила отбора Вудворда — Гоффмана для перициклических процессов раскрывают основные принципы, лежащие в природе реакций, относящихся с обычной точки зрения к совершенно различным типам это стимулирует новые экспериментальные исследования на основе предсказаний данных правил [6—9]. Недавний прогресс в области высокоскоростных вычислительных машин позволил удобно использовать некоторые полуэмпирические МО-мето-ды для расчета сложных взаимодействующих систем и получить результаты, достаточно точные в химическом смысле [10—18]. С помощью таких полуэмпирических методов были изучены координаты некоторых реакций [19—26]. Имелись попытки рассчитать химическое взаимодействие между большими молекулами методом МО аЬ initio [27—31 ]. Проведены также широкие исследования способов химического взаимодействия на основе молекулярных орбиталей изолированных реагентов [32—39]. Применение этих методов к реагирующим системам, интересным с химической точки зрения, в общем ограничено ранней стадией реакции поэтому энергию взаимодействующих систем обычно представляют в виде зави- [c.30]

    В той же речи Коулсон говорит, что скорость реакции сейчас мы не. можем вычислить аЬ initio и что, поскольку реакции представляют собой разрыв и реорганизацию связей, прежде чем изучать реагирующие л.юлекулы, следовало бы, насколько это возможно, пополнить сведения о нереагирующих молекулах [там же, стр. 177]. Следовательно, и с этой точки зрения изучение электронного строения молекул становится основной целью молекулярноорбитальной теории в органической химии. В настоящее время эта теория, несмотря на свои большие успехи в применении к сопряженным система , еще далека от выполнения перечисленных задач. Поэтому между нею и химической теорией электронных смещений еще нет должного контакта. [c.413]

    Вместе с тем протекание реакции зависит, как правило, не только от термодинамических свойств реагирующей системы. Прежде чем перейти в равновесное состояние, определяемое термодинамикой реакции, система проходит через ряд промежуточных состояний. Скорость прохождения системой этих стадий определяется кинетикой процесса скорость установления равновесного распределения энергии по степеням свободы — физической кинетикой, скорость установления равновесного химического состава — химической кинетикой. При этом спецификой плазмохимических реакций является сильное взаимное влияние факторов физической и химической кинетики. Конечная скорость установления равновесного распределения энергии по различным степеням свободы в ряде случаев ограничивает возможность применения классических методов химической кинетики, основанных на предположении о максвелл-больцмановском распределении эиергии в реагирующей системе. Но и в тех случаях, когда методы химической кинетики могут считаться применимыми, исследование химической кинетики системы затрудняется тем, что сравнительно высокие при рассматриваемых температурах скорости химических реакций могут весьма существенно зависеть от скорости физических процессов, таких как диффузия — молекулярный и турбулентный перенос, макроскопическое перемешивание компонентов реагирующей системы. Изучение плазмохимического процесса предполагает, в общем случае, исследование элементарных актов соударений при условии кТ Е термодинамики, физической и химической кинетики процесса, а также вопросов газодинамики перемешивающихся потоков реагирующих веществ с учетом взаимоосложняющих воздействий всех этих факторов друг на друга. Сложность такой постановки задачи очевидна. Поэтому правомерно принять некоторое физически осмысленное упрощение отдельных сторон вопроса, разграничение отдельных факторов и их взаимных влияний. [c.412]

    Однако прямое применение общих принципов неравновесной химической кинетики к реагирующим системам, включающим многоатомные КВМ с многостадийными механизмами, наталкивается на ряд серьезных трудностей [94] во-первых, неизвестны коэффициенты скорости большого числа процессов, которые должны быть учтены при решении балансных уравнений во-вторых, возникают определенные математические проблемы, связанные с очень большой размерностью получаемой системы. В связи с этим необходимо было разработать упрощенные подходы к описанию реакций КВМ для сложных многостадийных процессов. Один из таких подходов был предложен в работе [216]. Он включает в себя следующие этапы 1) расчет уровне-вых коэффициентов скорости реакций КВМ 2) самосогласованный аналитический расчет функции распределения колебательной энергни реагирующих молекул 3) совместное решение уравнений для концентраций компонент системы совместно с уравнениямп баланса колебательной и поступательной энергии в системе. [c.187]

    Основной теоретической задачей в химической кинетике является создание такой системы взглядов и уравнений, которая позволила бы, исходя из молекулярных параметров реагирующих компонентов и внешних условий протекания процесса, вычислить его скорость. К молекулярным параметрам относятся масса реагирующих молекул, их форма и размеры, порядок связи отдельных атомов и атомных групп в молекуле, энергетическая характеристика отдельных связей, совокупность возможных энергетических состояний молекулы. Под внешними условиями понимается давление (или концентрации), температура, условия, в которых осуществляется процесс (например, проведение реакции в статических условиях или в потоке). В решении этой задачи важным этапом является применение молекулярно-кинетической теории к интерпретации кинетических закономерностей при химических превращениях, поэтому настоящая глава и посвящается тем основам молекулярно-кине-тической теории, которые будут использованы далее при решении поставленной задачи. [c.89]

    Теперь рассмотрим применение изложенной методики для расчета химических процессов в двухфазных системах. Предположим, что на вход реактора подается единичное ступенчатое возмущение вещества А с концентрацией йд (О). Определим состояние системы вектором с т) о координатами Сд . (т), характеризующими концентрацию вещества А в -й ячейке сплошной фазы, и (т) — концентрацией вещества в к-а ячейке дисперсной фазы в момент времени тДг. Предположим, что вещество А реагирует при изотермических условиях в обеих фазах со скоростью, оТгисываемой уравнением d Jjdt = для сплошной фазы и уравнением [c.270]

    Представляется целесообразным начать обсуждение вопросов теории химического равновесия при высоких давлениях с реакций в газовой фазе, после чего перейти к имеющимся данным о равновесии в жидкой и твердой фазах, а также в многофазных системах. Это связано с тем, что агрегатные состояния реагирующих веществ предопределяют применение тех или иных методов вычисления равновесных концентраций при высоких давлениях. Поэтому для решения поставленной задачи необходимо знать в каждом конкретном случае, какие фазы сосуществуют в рассматриваемой смеси в условиях равновесия. Нельзя не учитывать при этом изменений агрегатного состояния веществ и характера сосуществующих фаз при приложении давления. А эти изменения зачастую весьма существенны. Например, температура плавления (затвердевания) большинства веществ повышается с увеличением давления. При 12 000 кПсм хлороформ плавится при 207,9° (вместо — 63,5° [c.9]

    Определение объема одноступенчатого гипотетического реактора представляет интерес для решения вопроса о том, каким числом ступеней реакции следует ограничиться прн выборе и обосновании технологической схемы реакционного узла. Сопоставляя реакционные объемы одноступенчатых систем с прямотоком и противотоком, можно определить предельные возможности интенсификации химического процесса, заключающиеся в использовании метода противотока между реагирующими компонентами реакции. Сопоставляя аналогично объемы одноступенчатой и двухступенчатой систем, в которых осуществляется противоток хлористого водорода и пропилена, можно оценить преимущества многоступенчатой системы перед двухступенчатой. Если эти преимущества значительны, то представляет интерес проверить целесообразность применения трех и большего числа ступеней гидрохлорироъания. [c.380]


Смотреть страницы где упоминается термин Применение к химически реагирующим системам: [c.161]    [c.124]    [c.263]    [c.164]    [c.576]    [c.576]    [c.8]    [c.52]    [c.328]   
Смотреть главы в:

Реакционная способность и пути реакций -> Применение к химически реагирующим системам




ПОИСК







© 2025 chem21.info Реклама на сайте