Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скачки потенциала в адсорбционных

    Третья причина возникновения двойного электрического слоя и скачка потенциала — адсорбционная ориентация полярных молекул. Нейтральные в целом полярные молекулы могут располагаться определенным образом на поверхности, образуя слой ориентированных диполей. Учитывая, что свою роль в образовании двойного элект- [c.82]

    Скачок потенциала между неподвижной и движущейся фазами, таким образом, меньше термодинамического потенциала ф и равен г ]. Соотношение между термодинамическим потенциалом и потенциалом г])] графически представлено на рис, 41. Здесь с — толщина закрепленной части диффузного слоя (слой Гельмгольца), ордината фа соответствует полному скачку потенциала. Адсорбционный потенциал выражен ординатой 1151. Как видно из графического построения, разность ф —11 1 составляет величину 1 5 падения потенциала в закреплен- [c.225]


    Третья причина возникновения двойного электрического слоя и скачка потенциала — адсорбционная ориентация полярных молекул. Нейтральные в целом полярные молекулы могут располагаться определенным образом на поверхности, образуя слой ориентированных диполей. На рис. 42 схематически показана такая ориентация. Учитывая, что свою роль в образовании двойного электрического слоя может сыграть каждый из приведенных факторов, разность внутренних потенциалов фаз 7 и 2 представляют обычно как сумму трех составляющих  [c.91]

    Еще более эффективен адсорбционно-электрохимический механизм пассивирования, установленный Эршлером, Б. Н. Кабановым, Я. М. Колотыркиным и др. Справедливость этого механизма подтверждается, напрнмер, данными по растворению платины. Скорость ее растворения в соляной кислоте при постоянном потенциале экспоненциально зависит от поверхностной концентрации кислорода. Чтобы скорость растворения упала в четыре раза, достаточно посадить на электрод количество кислорода, способное покрыть около 4% его видимой поверхности. Следующая такая же порция кислорода уменьшает скорость растворения еще в четыре раза, т. е. в шестнадцать раз по сравнению с первоначальной величиной, новые 4% доводят ее до /б4 от начального значения и т. д. вплоть до практически полного прекращения растворения платины. Подобная экспоненциальная зависимость объясняется Эршлером вытеснением из двойного слоя адсорбированными атомами кислорода (играющими роль отрицательного конца диполя металл — кислород) эквивалентного числа адсорбированных анионов. Уменьшение числа анионов в двойном слое соответственно снижает ионный скачок потенциала при сохранении неизменной общей разности потенциалов между металлом и раствором. Это должно привести, согласно законам электрохимической кинетики, к экспоненциальному снижению скорости ионизации, т. е. к такому же уменьшению скорости растворения металла, что и наблюдается на опыте. [c.484]

    Эффект увеличения скорости растворения металла наблюдается, если скачок потенциала сосредоточен в ионном двойном слое. Эффект снижения скорости растворения металла (пассивность может наблюдаться, если скачок потенциала приходится на поверхностный слой металла анодная поляризация уменьшает кинетическую энергию поверхностных электронов (поверхностного уровня Ферми), что приводит к усилению их связи с поверхностными положительными ионами металла и, как следствие этого, к уменьшению свободной энергии и адсорбционной способности поверхности металла. [c.311]


    Двойной электрический слой может возникнуть также в результате адсорбции поверхностно-активных веществ. При специфической адсорбции полярные молекулы определенным образом ориентируются на поверхности металла и возникает адсорбционный двойной электрический слой и соответствующий скачок потенциала. В водных растворах электролитов на поверхности металлов всегда имеется двойной электрический слой в результате адсорбции дипольных молекул воды. [c.300]

Рис. 46. Принципиальная схема установки для измерения адсорбционных скачков потенциала методом вертикальной струи н. к. 9.— нормальный каломельный электрод ЭУ — электрометрический усилитель или электрометр П — потенциометр Рис. 46. <a href="/info/844583">Принципиальная схема установки</a> для измерения <a href="/info/8640">адсорбционных скачков потенциала</a> <a href="/info/1469889">методом вертикальной</a> струи н. к. 9.— <a href="/info/1804232">нормальный каломельный электрод</a> ЭУ — <a href="/info/40646">электрометрический усилитель</a> или электрометр П — потенциометр
Рис. 47. Принципиальная схема установки для измерения адсорбционных скачков потенциала методом радиоактивного зонда Рис. 47. <a href="/info/844583">Принципиальная схема установки</a> для измерения <a href="/info/8640">адсорбционных скачков потенциала</a> <a href="/info/10065">методом радиоактивного</a> зонда
    При измерении адсорбционных скачков потенциала в растворах неорганических солей в качестве эталонного раствора обычно используют 0,01 и. раствор КС1 и предполагают, что поверхностный потенциал в этом растворе практически такой же, как и в чистом растворителе. При переходе от этого раствора к раствору К1 в воде наблюдается адсорбционный скачок потенциала, составляющий от нескольких до десятков милливольт, причем отрицательно заряженная обкладка двойного слоя обращена к воздуху. Условно считают, что А <0. Абсолютная величина АЕ растет с ростом концентрации К1. [c.91]

Рис. 49. Зависимость адсорбции (/) и адсорбционного скачка потенциала (2) иа границе раствор — воздух от концентрации н-валериановой кислоты (а) и зависимость Рис. 49. <a href="/info/301012">Зависимость адсорбции</a> (/) и <a href="/info/8640">адсорбционного скачка потенциала</a> (2) иа <a href="/info/10535">границе раствор</a> — воздух от концентрации н-<a href="/info/912">валериановой кислоты</a> (а) и зависимость
    В водных растворах органических веществ адсорбционные скачки потенциала значительно больше, чем в растворах неорганических солей. Это связано с положительной адсорбцией органических веществ на границе раствор — воздух. Для растворов спиртов, кислот, простых эфиров и аминов жирного ряда АЕ>0. Возникновение положительного адсорбционного скачка потенциала связано с тем, что органические вещества образуют адсорбционные слои, в которых их диполи обращены положительным концом к газовой фазе. Зависимость Г и от концентрации органического вещества в большинстве случаев выражается кривыми, имеющими пределы, причем адсорбционные скачки потенциала растут в первом приближении прямо пропорционально адсорбции (рис. 49). Из этих результатов можно сделать два вывода. Во-первых, о том, что адсорбция органического [c.92]

    Сопоставим теперь адсорбционные скачки потенциала на границах раздела раствор — воздух и раствор — ртуть. Обычно при этом рассматривают зависимости АЕ от Г, где для ртути величина АЕ определяется сдвигом п. н. з. при введении в раствор поверхностноактивных веществ. [c.95]

    Для соединений, содержащих я-электронные связи, расхождение в величинах адсорбционных скачков потенциала на двух границах раздела выражено еще сильнее. На границе с воздухом обычно АЕ>0. С другой стороны, на границе со ртутью происходит первоначально сдвиг п. н. 3. в отрицательную сторону (Д <0). По мере заполнения поверхности я-электронное взаимодействие ослабевает, так как моле- [c.95]

Рис. 52. Зависимость адсорбционного скачка потенциала от адсорбции Рис. 52. Зависимость <a href="/info/8640">адсорбционного скачка потенциала</a> от адсорбции
    Таким образом, экспериментальное определение величины Аф = = офр — офр. получившей название адсорбционного скачка потенциала, фактически сводится к измерению вольта-потенциала двух растворов. [c.89]


    Т. е. отличается от вольта-потенциала р1/ р- на Аг] . Поэтому задача определения рУр сводится к тому, чтобы элиминировать скачок потенциала Аг ). Различные методы измерения рУр> (а следовательно, определения адсорбционных скачков потенциала) отличаются друг от друга приемами, при помощи которых обращается в нуль величина Аг] . [c.90]

    В водных растворах органических-веществ адсорбционные скачки потенциала значительно больше, чем в растворах неорганических солей. Это связано с положительной адсорбцией органических веществ на границе раствор — воздух. Для растворов спиртов, кислот, простых эфиров и аминов жирного ряда Аф > 0. Возникновение положительного адсорбционного скачка потенциала связано с тем, что органические вещества образуют адсорбционные слои, в которых их диполи обращены положительным концом к газовой фазе. [c.94]

    Зависимость Г и Аф от концентрации органического вещества в большинстве случаев выражается кривыми, имеющими пределы, причем адсорбционные скачки потенциала растут в первом приближении прямо пропорционально адсорбции (рис. 49). Из этих резуль- [c.94]

    Постоянство ориентации органических диполей на поверхности раствора можно объяснить тем, что углеводородный радикал частично выходит в газовую фазу, и органические молекулы представляют собой как бы поплавки, плавающие в вертикальном положении на поверхности раствора. Такая модель, развитая в работах И. Лэнгмюра и Л. Г. Гурвича, подтверждается тем, что при переходе от одного спирта к другому с иной длиной цепи предельный адсорбционный скачок потенциала остается почти постоянным (фдг 350 мв). У эфиров адсорбционный скачок больше, так как он обусловлен наличием двух связей С—О в молекуле простого эфира (фдг 550 мв). Доказательством данной ориентации органических молекул является также тот факт, что введение галоидов в углеводородную часть молекулы органического вещества уменьшает положительный скачок потенциала или изменяет знак Дф. В табл. 3 приведены значения фл для хлорзамещенных уксусных кислот. [c.95]

    Предельные адсорбционные скачки потенциала на границе раствор — воздух для уксусной кислоты и ее хлорпроизводных [c.95]

    Сопоставим теперь адсорбционные скачки потенциала на границах раздела раствор — воздух и раствор — ртуть. Обычно при этом рассматривают зависимости Дф от Г, где для ртути величина Дф опре- [c.97]

    Согласно адсорбционной теории наступление пассивного состояния не обязательно связано с образованием полимолекулярной сксндной пленки. Оно может быть достигнуто также за счет торможения процесса растворения, вызванного адсорбированными атомами кислорода. Появление кислородных атомов на поверхности металла в результате разряда ионов 0Н (или молекул воды) может происходить при потенциалах более низких, чем те, при которых выделяется кислород или образуются оксиды. Адсорбированные атомы кислорода пассивируют металл, или создавая на его поверхности сплошной мономолекулярный слой, или блокируя наиболее активные участки поверхности, или, наконец, изменяя эффективную величину скачка потенциала на границе металл — раствор. Представление о сплошном мономоле1сулярном слое кислородных атомов как о причине пассивности металлов не дает ничего принципиально нового по сравнению с пленочной теорией пассивности, тем более, что такой слой трудно отллчить от поверхностного оксида. По количеству кислорода мономолекулярный слой его адсорбированных атомов (или молекул) при плотной упаковке эквивалентен двум — четырем молекулярным слоям, составленным из поверхностного оксида. [c.483]

Рис. 24. Схема ионного скачка потенциала (а) и сложного адсорбцион-но-ионного скачка потенциала (5) при во.з-никновении адсорбционной пг ссманости Рис. 24. Схема <a href="/info/833009">ионного скачка потенциала</a> (а) и <a href="/info/300857">сложного адсорбцион</a>-но-<a href="/info/833009">ионного скачка потенциала</a> (5) при во.з-никновении адсорбционной пг ссманости
    Таким образом, имевшийся ранее на металле ионггый скачок потенциала (рис. 24) заменяется сложным адсорбцион-но-иониым скачком потенциала. В результате происходит сдвиг пбше1о. электродного потенциала в положительную сторону и ионизация металла уменьшается. Количество кислорода по этому варианту пассивации меньше, чем требуется по расчету для создания мономолекулярного слоя. Характерным примером зависимости пассивности от количества кислорода, адсорбированного поверхностью металла по вышеупомянутому механизму, являются данные Б. В. Эршлера, согласно которым при покрытии только 6% поверхности илатииы адсорбированным кислородом ее потенциал в растворе НС1 изменяется и положительную сторону на 0,12 в и одновременно скорость анодного растворения уменьшается в 10 раз. [c.65]

    Изменения в строении двойного электрического слоя не влияют на равновесный потенциал, если остаются постоянными химические потенциалы веществ, участвующих в электродной реакции внутри фаз. Например, при добавлении к раствору поверхностно-активного вещества появляется новый адсорбционный двойной электрический слой и соотвеитвующий скачок потенциала. [c.300]

    От диффузного 1-п отенциала отличают адсорбционный ф -потен-циал. Под адсорбционным 1)1-потенциалом понимают потенциал, который возникает в адсорбционном д. э. с. Как видно из рис. 81, адсорбционный д. э. с. находится от поверхности электрода на расстоянии, большем диаметра иона. Адсорбционный t ) -пoтeнциaл может и в концентрированных растворах иметь большое значение, если в растворе присутствуют поверхностно-активные ионы или молекулы. На расстоянии порядка около двух ионных диаметров адсорбционный 1 7 -потенциал падает до нуля. Знак адсорбционного грх-по-тенциала может и не совпадать с общим скачком потенциала электрода. Если, например, поверхность электрода заряжена положительно и на ней специфически адсорбированы анионы, то скачок потенциала в плотном двойном электрическом слое будет равен сумме общего скачка потенциала ф и адсорбционного г )1-потенциал (рис. 82). [c.302]

    Теория Штерна (рис. 11.11,6) позволяет выделять адсорбционный и диффузный слои с потенциалами фь и возникающими соответственно на расстояниях б и Д от межфазной границы. Диффузный слой обладает теми же свойствами, что и слой Гуи—Чапмена (повышение концентрации электролитов приводит к его сжатию, причем сжимаемость увеличивается с ростом валентности). Это позволило дать четкое определение понятия -потенциала, представляющего собой скачок потенциала на границе адсорбционного и диффузного слоев по сравнению с объемом раствора. Такое определение означает, что под действием внешнего электрического поля перемещаются ионы диффузного [c.56]

    Отличие -потенциала от е-потенциала объясняется тем, что при движении одна фаза скользит относительно другой, причем скольжение происходит не по самой поверхности, а по тончайшему адсорбционному слою толщиной б", непосредственно связанному с основной поверхностью. Таким образом, электрокине-, тический потенциал представляет собой скачок потенциала, возникающий между адсорбционным слоем и диффузионными слоями. [c.167]

    В этих работах в общем были обнаружены те же закономерности, что и в случае рассмотренного выще действия поверхностно-активных веществ на свойства золя AsjSa- Особенность заключалась в том, что алкильные эфиры полиэтиленгликоля вызывали перёзарядку положительно заряженных частиц золя AgI. 3T0 явление было объяснено тем, что на потенциал двойного электрического слоя налагается адсорбционный скачок потенциала, который возникает в ориентированном у поверхности дисперсной фазы слое полярных молекул алкильных эфиров полиэтиленгликоля. [c.299]

    Рассмотренная картина значительно усложняется, когда частицы способны избирательно адсорбировать ионы какого-нибудь определенного вида, иными словами, когда проявляется действие адсорбционного потенциала. Кроме того, на межфазной границе обычно существует скачок потенциала. А. Н. Фрумкин показал, что на межфазной границе аэрозолей воды или снега благодаря большому. .дипольному моменту молекул Н2О и их ориентации сушествует положительный электрический потенциал порядка 250 мВ Скачок потенциала на межфазной границе может возникать и вследствие так называемой баллоэлектрнзании — электризации частиц аэрозоля при получении его методом диспергирования. [c.346]

    Адсорбция кислорода является необратимым процессом. Поэтому термодинамическая теория может быть использована только для малой адсорбции кислорода. Несмотря на это, из кривой заряжения и на основе адсорбционного метода можно сделать некоторые качественные выводы о характере адсорбции кислорода на электроде. В самом деле, как видно из рис. 7, в области адсорбции кислорода на электроде заряд двойного слоя начинает падать с ростом Ег- Поскольку дЕ1дд)Ау >( , то этот результат указывает на появление диполей, обращенных отрицательным концом к раствору. Этот вывод следует также из расчета вклада атомов кислорода в скачок потенциала, который проводится совершенно аналогично расчету дЕ дАц) . Образование диполей платина — кислород с отрицательным зарядом на кислороде является следствием того, что кислород оттягивает на себя электроны платины. Величина дипольного момента связи Р1—О д больше, чем связи Р1—Н д . Так, суммарный вклад атомов водорода в скачок потенциала составляет десятые доли вольта, тогда как сум- [c.79]

    Адсорбционные скачки потенциала в водных растворах падают в ряду 8СМ">С10г>1 >Вг">С1 >Р , причем для аниона 8СЫ в 2 и. растворе его соли АЕ —90 мВ. Данный ряд соответствует увеличению химической энергии гидратации анионов. На границе водных растворов с незаряженной поверхностью ртути этот ряд нарушается анион 8СЫ" занимает место между 1 и Вг", анион СЮ — между С1 и Р. Этот результат указывает на то, что ряд поверхностной активности анионов на границе электрод — раствор обусловлен [c.92]


Смотреть страницы где упоминается термин Скачки потенциала в адсорбционных: [c.268]    [c.300]    [c.88]    [c.89]    [c.90]    [c.90]    [c.96]    [c.92]    [c.92]   
Физика и химия поверхностей (1947) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал адсорбционный

Скачки потенциала

Скачок потенциала

Скачок потенциала адсорбционный



© 2024 chem21.info Реклама на сайте