Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лиофильные дисперсии водные

    Кинетика структурообразования в водных дисперсных растворах трехкальциевого силиката / Т. Р. Вагнер, И. Г. Гранковский, Н. Н. Круглицкий и др.— Фиэ.-хим. механика и лиофильность дисперс. систем, 1971, вып. 2, с. 79—83. [c.239]

    Лиофильные дисперсии являются термодинамически устойчивыми обратимыми системами. К ним относятся водные растворы мыл и других дифильных ПАВ, а также некоторые полимерные растворы. По многим свойствам эти системы похожи на растворы полимеров. [c.143]


    К лиофильным дисперсиям относится сравнительно, небольшая группа олигомерных пленкообразующих систем с водной или водно-органической средой. Применение пленкообразующей системы в форме лиофильной дисперсии особенно удобно при получении покрытий путем выделения твердой фазы из объема, например, методом электроосаждения, применение которого в промышленности непрерывно расширяется. Из лиофобных дисперсий этим методом не удается получать хорошо адгезированные покрытия, а из растворов — покрытия достаточной толщины. [c.149]

    Глифталевые и пентафталевые алкиды с малым значением степени иоликонденсации и повышенным содержанием свободных функциональных групп (—СООН и —ОН) способны образовывать мицеллярные водные растворы или лиофильные дисперсии. Растворимость их в воде заметно улучшается и раствор приближается к молекулярному в результате нейтрализации карбоксильных групп (для чего обычно используют летучие азотистые основания), а также при добавлении смешивающихся с водой органических растворителей (спиртов, этилцеллозольва, диоксана и др.). Это обычно тощие и средние алкиды, модифицированные высыхающими маслами или дегидратированным касторовым маслом. [c.217]

    В предыдущем параграфе рассмотрены двухкомпонентные лиофильные коллоидные системы — дисперсии мицеллообразующих ПАВ. Введение в систему третьего компонента, в зависимости от его природы, может либо затруднять мицеллообразование, либо (что наблюдается чаще) способствовать этому процессу. Подавление ассоциации молекул ПАВ в мицеллы происходит при введении в водный раствор ПАВ значительных количеств полярных органических веществ, например низших спиртов. Такие вещества увеличивают молекулярную растворимость ПАВ и вследствие этого затрудняют мицеллообразование. Введение этих же веществ, но в малых количествах, и особенно добавление неполярных углеводородов приводит к некоторому понижению ККМ, т. е. облегчает мицеллообразование. При этом существенно изменяется строение мицелл введенный в качестве добавки третий компонент входит в состав мицеллы. В результате практически нерастворимые в чистой воде углеводороды растворяются в мицеллярных дисперсиях ПАВ. Это явление — включение в состав мицелл третьего компонента, нерастворимого или слабо растворимого в дисперсионной среде, называется солюбилизацией. Различают прямую солюбилизацию (в водных дисперсиях ПАВ) и обратную (в углеводородных системах). [c.232]


    Для термодинамически устойчивых лиофильных золей коагулянтами служат в-ва, к-рые адсорбируются на частицах и увеличивают энергию связи в контактах. Так, для водных дисперсий гидрофильных частиц эффективными коагулянтами являются в-ва, гидрофобизующие пов-сть частиц и обусловливающие гидрофобное взаимодействие в случае дисперсий кремнезема, глин и др. гидрофильных в-в с отрицат. зарядом пов-сти это катионоактивные ПАВ. [c.413]

    Изложенные выше вопросы лиофильности высокодисперсных минералов связаны с реологическими и структурно-механическими свойствами их водных дисперсий. Рассмотрим взаимосвязь между лиофильностью и деформационно-структурными показателями дисперсных систем, методы изучения которых вытекают из основных положений физико-химической механики, разработанной академиком П. А. Ребиндером и его школой [24]. Многочисленные исследования однозначно указывают на коагуляционный характер образования пространственных сеток в дисперсиях слоистых силикатов. Такие системы являются тиксотропными, причем тонкие прослойки дисперсионной среды, т. е. наиболее близкие к поверхности частиц слои гидратных (сольватных) оболочек (согласно А. В. Думанскому), оказывают пластифицирующее действие, создавая условия для образования обратимых, хотя и неполных, контактов и значительных остаточных, а иногда и быстрых эластических деформаций. С увеличением толщины прослоек дисперсионной среды по местам контактов, например, за счет адсорбирующихся поверхностно-активных веществ или при замене обменного комплекса слоистого силиката на различного рода катионы наблюдается понижение прочности системы на сдвиг, т. е. ее разжижение и потеря тиксотропных свойств. [c.225]

    Для успешного решения задач по созданию новых материалов и разработки общих принципов управления их физико-механическими свойствами применяется, рожденная в последние 10—15 лет в Советском Союзе, пограничная область науки — физико-химическая механика, объединяющая вопросы реологии (течения), механики, физики твердого тела (молекулярной физики), физико-химических процессов, происходящих на различных твердых поверхностях. Ее возникновение связано с именем академика П. А. Ребиндера. Исследования, проведенные П. А. Ребиндером [16] и нами [2, 3], однозначно указывают на коагуляционный характер образования пространственных сеток в дисперсиях глинистых минералов. Такие системы являются тиксотропными, причем тонкие прослойки дисперсионной среды, т. е. наиболее близкие к поверхности частиц слои гидратных оболочек, оказывают пластифицирующее действие, создавая условия для образования обратимых, хотя и неполных контактов и значительных остаточных, а иногда и быстрых эластических деформаций. С увеличением толщины прослоек между частицами дисперсной фазы по местам контактов, например за счет адсорбирующихся поверхностно-активных веществ, имеет место понижение прочности системы на сдвиг, т. е. ее разжижение и потеря тиксотропных свойств. Установлено, что изменение величин структурно-механических констант и энергии связи Ее (условный модуль деформации) зависит от кристаллической и субмикроскопической структуры минералов, рода обменных катионов и др. Управляя лиофильными, в данном случае гидрофильными свойствами дисперсных минералов, можно получать коагуляционные структуры их водных дисперсий с необходимыми механическими (деформационными) ха- [c.6]

    Лиофильные золи — термодинамически устойчивые системы. Их агрегативная устойчивость не связана с наличием стабилизатора. Поверхностный слой М. в таких системах образован лиофильными группами молекул вещества самой дисперсной фазы. Коллоидные частицы лиофильных золей интенсивно взаимодействуют с окружающей жидкостью и межфазная свободная энергия чрезвычайно мала. Лиофильные золи образуются в результате самопроизвольного диспергирования твердых тел или жидкостей под влиянием теплового движения и не разрушаются со временем при сохранении условий их возникновения. Таковы, напр., системы типа критич. эмульсий, возникающих вблизи критич. темп-ры смешения двух жидкостей, водные дисперсии бентонитовых глин, коллоидные дисперсии мыл и синтетич. моющих веществ, а также нек-рых органич. пигментов и красителей. [c.128]

    Различают водные дисперсии лиофобные, лиофильные и переходного типа (водные лиофобные дисперсии часто называют гидрофобными, а лиофильные — гидрофильными). Для отнесения водных дисперсий к тому или иному типу используется тот же критерий— величина межфазного поверхностного натяжения, — что и в случае органодисперсий. В качестве пленкообразующих систем в основном используются водные дисперсии лиофобного и лио-фильного типов. Дисперсии переходного типа применяются довольно редко. [c.82]


    Для многих полимеров, ограниченно совмещающихся с водой, лиофильные водные дисперсии могут быть получены только в смеси воды с органическими растворителями, в качестве которых обычно используют спирты. Кроме того, для повышения сродства таких полимеров к воде их полярные группы часто переводят в более активные, увеличивающие лиофильность полимера. Так, карбоксильные группы могут быть переведены в форму аммонийных солей  [c.85]

    Лиофильные водно-спиртовые дисперсии получают, например, на основе олигомеров поликонденсационного типа (эпоксидные, карбамидо-, меламино- и фенолоформальдегидные, алкидные и некоторые другие). Для получения таких дисперсий олигомер растворяют в спиртах, проводят ионизацию полярных групп (—СООН, —ОН), переводя их в форму соответствующих солей, а затем разбавляют водой. [c.85]

    Водные дисперсии в качестве пленкообразующих систем применяются лиофильные, лиофобные и переходные. [c.141]

    Натуральный или дивиниловый каучуки лиофильны по отношению к бензолу й бензину, — они в этих растворителях самопроизвольно растворяются. Натуральный каучук лиофобен по отношению к воде, он в ней не растворяется, но можно приготовить водную эмульсию или водную дисперсию каучука — так называемый латекс. Нитроцеллюлоза лиофильна по отношению к ацетону, она в нем самопроизвольно растворяется. Нитроцеллюлоза лиофобна к воде, и мы можем получить типичный коллоидный раствор нитроцеллюлозы в воде. Желатина лиофильна по отношению к воде, и она в ней самопроизвольно растворяется (при нагревании), но мы можем получить коллоидный раствор желатины в спирте, по отношению к которому она лиофобна. [c.42]

    Первой и основной причиной агрегативной неустойчивости дисперсий является высокое значение межфазного натяжения на границе твердой и жидкой фаз, выражающееся, в частности, в плохом смачивании поверхности частиц в дисперсионной среде. Лиофобные дисперсии, в частности суспензии гидрофобного угля в полярных (водных) средах, обнаруживают агрегативную неустойчивость, выражающуюся в самопроизвольном агрегировании частиц (автокоагуляция под действием молекулярных сил) с образованием агрегатов и пространственных структур. Но вместе с тем в углях содержится небольшое количество неорганических веществ (алюмосиликатов, сульфидов, главным образом железа, карбонатов кальция, магния, железа), поэтому наблюдается неплохая смачиваемость угля водой. Поверхность угля мозаична, на ней есть лиофильные и лиофобные участки. Из анализа литературных данных и приведенных выше результатов рентгеноструктурных исследований также следует, что поверхность угля по физико-химической природе неоднородна [7, 133]. [c.165]

    Наиболее перспективные лакокрасочные материалы и покрытия на органической основе относятся к дисперсиям переходного типа, многие лаки — к лиофильным и водные краски — к лиофобным дисперсиям [85 89]. Пленкообразующие составы, коллоидные системы трудно отнести к какому-либо классу дисперсий. Они могут содержать лиофильно-диспергированные частички (молекулы и мицеллы маслорастворимых ПАВ), лио-фобно-диспергированные (полимерные загустители) и ассоциаты переходного типа (макроассоциаты органических ПАВ). Для достижения ккнетрхЧсСкои к агрвгатР1Бнои стабильности при низ ких и повышенных температурах ПИНС должны содержать высокоэффективные ПАВ, обладающие высоким солюбилизирующим, детергентно-диспергирующим и стабилизующим действиями. К таким ПАВ относятся моющие присадки к моторным маслам и близкие к ним по составу и физико-химическому действию маслорастворимые ингибиторы коррозии нефтяные и синтетические сульфонаты, алкенилсукцинимиды и пр. [c.58]

    Типичным представителем лиофильных дисперсных систем являются мицеллярные дисперсии ПАВ, в которых наряду с отдельными молекулами присутствуют коллоидные частицы мицеллы) — ассоциаты молекул ПАВ с достаточно большой степенью ассоциации (числом молекул в мицелле) т = 20—100 и более. При образовании таких (сферических) мицелл в полярном растворителе — воде — углеводородные цепи молекул ПАВ объединяются в компактное углеводородное ядро, а гидратированные полярные группы, обращенные в сторону водной фазы, образуют гидрофильную оболочку (рис. VIII—7). Благодаря гидрофильности наружной оболочки, экранирующей углеводородное ядро от контакта с водой, поверхностное натяжение на границе мицелла — [c.223]

    В предыдущем параграфе рассмотрены двухкомпонентные лиофильные коллоидные системы — дисперсии мицеллообразующих ПАВ. Введение в систему третьего компонента может в зависимости от его природы либо затруднять мицеллообразование, либо (что наблюдается чаиде) способствовать этому процессу. Подавление ассоциации молекул ПАВ в мицеллы происходит при введении в водный раствор ПАВ значительных количеств полярн1>1х органических веществ, например низших спир-278 [c.278]

    Коллоидные системы, дисперсные системы с частицами дисперсной фазы от 10 до 10 см. Коллоидные частицы, участвуя в интенсивном броуновском двих<ении, противостоят седиментации (оседание частиц на дно) в поле сил земного тяготения и сохраняют равномерное распределение по объему дисперсионной среды. Наиболее важны и многообразны коллоидные системы с жидкой дисперсионной средой. Их делят на лиофильные и лиофобные. В первых частицы дисперсной фазы интенсивно взаимодействуют с окружающей жидкостью, поверхностное натяжение на границе фаз очень мало, вследствие чего эти коллоидные системы термодинамически устойчивы. К лиофильным коллоидным системам относят мицеллярные (мицелла - коллоидная частица), растворы ПАВ (поверхностно активные вещества), растворы некоторых высокомолекулярных веществ, органических пигментов и красителей, критических эмульсий (образующиеся вблизи критической температуры смешения двух жидких фаз), а также водные дисперсии некоторых минералов. В лиофобных коллоидных системах частицы слабо взаимодействуют с дисперсионной средой, межфазное натяжение довольно велико, система обладает значительным избытком свободной энергии и термодинамически неустойчива. Агрегативная устойчивость лиофобных коллоидных систем обычно обеспечивается присутствием в системе стабилизирующего вещества, которое адсорбируется на коллоидных частицах, препятствуя их сближению и соединению (коагуляции - образованию агрегатов). Типичные лиофобные коллоидные системы - золи металлов, оксидов и сульфидов, латексы (водные дисперсии синтетических полимеров), а также гели (структурированные коллоидные системы с жидкой дисперсионной средой), возникающие при коагуляции и структурировании золей. [c.116]

    КОЛЛОИДНЫЕ МЕЛЬНИЦЫ, см. Диспергирование. КОЛЛОИДНЫЕ РАСТВОРЫ, то же, что золи. КОЛЛОИДНЫЕ СИСТЕМЫ, Дисперсные системы с частицами дисперсной фазы от 10 до 10 см. Коллоидные частицы, участвуя в интенсивном броуновском движении, противостоят седиментаций в поле сил земного тяготения и сохраняют равномерное распределение по объему дисперсионной среды. Наиб, важны и многообразны К. с. с жидкой дисперсионной средой. Их делят ва лиофильные и лио-фобные. В первых частицы дисперсной фазы интенсивно взаимод. с окружающей жидк., поверхностное натяжение на границе фаз очень мало, вследствие чего зти К. с. термодинамически устойчивы. К лиофильным К. с. относятся мицеллярные р-ры ПАВ, р-ры нек-рых высокомол. в-в, орг. пигментов и красителей, критич. эмульсии, а также водные дисперсии нек-рых минералов. В лиофобных К. с. частицы слабо взаимод. с дисперсионной средой, межфазное натяжение довольно велико, сист. обладает значит, избытком своб. энергии н термодинамически неустойчива. Агрегативная устойчивость лиофобных К. с. сюычно обеспечивается присут. в сист. стабилизирующего в-ва, к-рое адсорбируется на коллоидных частицах, препятствуя их сближению и соединению. Типичные лиофобные К. с.— золи металлов, оксидов и сульфидов, латексы, а также гели, возникающие при коагуляции и структурировании золей. КОЛОРИМЕТРИЯ, см. Фотометрический аналпз. КОЛХИЦИНОВЫЕ АЛКАЛОИДЫ (трополоновые алкалоиды), выделены из нек-рых родов растений сем. лилейных (иНасеае). Включают ок, 30 представителей. [c.267]

    Чрезвычайно важна в практич. отношении способность ПАВ, гл. обр. мылоподобных и высокомолекулярных, стабилизовать высокодисперсные (микрогетерогенные) системы. Мельчайшие частицы твердого тела, капельки жидкости или пузырьки газа, образующие дисперсную фазу и равномерно распределенные в окружающей (дисперсионной) среде, имеют тенденцию укрупняться вследствие слипания (коагуляции) или слияния (коалесценции) при соударении в процессе броуновского движения. Сделать систему агрегативно устойчивой можно с помощью стабилизаторов — веществ, создающих вокруг частиц моно- или полимоле-кулярный защитный слой. Особенно эффективны стабилизаторы, к-рые образуют защитный слой, обладающий повышенной структурной вязкостью (что может иметь место в случае высокомолекулярных и полуколлоидных ПАВ). Такой слой предельно сольватирован с внешней стороны, куда обращены лиофильные группы молекул стабилизатора. Вследствие сольватации (гидратации — в случае водной дисперсионной среды) слипания частиц по внешним поверхностям защитных оболочек не происходит из-за ослабления межмолекулярных сил сцепления. Вытеснение же защитного слоя из зазора между сближающимися частицами затруднено из-за повышенной поверхностной вязкости, к-рая является следствием когезионного взаимодействия лиофобных (гидрофобных в случае водной дисперсионной среды) частей молекул ПАВ в толще адсорбционной оболочки. Т. обр., наиболее эффективные стабилизаторы водных дисперсий (суспензий, эмульсий, латексов, пен) — ПАВ, к-рые наряду с высокой гидрофильностью обладают достаточно длинными углеводородными радикалами, что обусловливает прочное когезионное сцепление молекул в адсорбционном слое. В гомологич. рядах алифатич. ПАВ, напр., способность стабилизовать водные дисперсии появляется у соединений с числом углеродных атомов в углеводородной цепи более 9—11. [c.336]

    Лиофильные водные дисперсии. Для получения лиофильиых водных дисперсий обычно используют пленкообразующие, имеющие большое сродство к воде. Лиофильные водные дисперсии представляют собой термодинамически устойчивые мицеллярные растворы полимеров. [c.84]

    Переходя к рассмотрению применимости современных теорий устойчивости для описания механизма стабилизации и дестабилизации суспензий клеток, следует прежде всего отметить, что между поверхностью клетки и окружающей ее водной средой поверхностное натяжение равно нулю [14]. Следовательно, суспензии микроорганизмов, согласно классификации Ребиндера—Щукина (см. раздел 1.1), являются типичными лиофильными системами, что подтверждается многочисленными опытными данными. Исключение составляют некоторые виды микроорганизмов или клетки культур, выращенных на специальных средах (Маршалл и др., 1973,1975). В этом случае поверхность бактерий может быть полностью гидрофобна или гидрофобность характерна только для полюса клетки. Таким образом, сольватация поверхности, рассматриваемая в коллоидной химии как один из факторов стабилизации дисперсии, имеет большое значение и для оценки устойчивости биологических систем в связи с обнаруженной высокой степенью гидрофильности поверхности клеток микроорганизмов. Развитые гидратные оболочки препятствуют взаимодействию и агрегации клеток (Буш, Стамм, 1968 Зонтаг, 1976), вызывают затруднения при флотации микроорганизмов (Сотскова, Кульский и др., 1981), ухудшают адгезию клеток (Звягинцев, 1973). Как правило, повышение заряда поверхности (увеличение f-потенциала) усиливает ее гидратацию, т. е. электрические свойства клеток не только обуславливают существование электростатического барьера, но и играют определенную роль в формировании фактора [c.16]

    Естественный путь снижения уровня мощности для предельного разрушения структуры при вибрации состоит, как это вытекает из результатов, приведенных в 1 данной главы, в совместном применении добавок ПАВ и вибрации. Эффективность совместного действия вибрации и добавок лиофильных и лиофобных ПАВ в процессах разрушения двухфазных структур во всем возможном диапазоне изменения их реологических свойств была изучена впервые на ряде дисперсных систем и, в частности, на водных дисперсиях алюмосиликатных частиц с добавками ОП-10, ГКЖ-10, лиг-носульфоната кальция (0,3% к твердой фазе) [106, 191, 281]. Из рассмотрения полных реологических кривых этих систем при вибрации в сочетании с ПАВ и без ПАВ (рис. 77, 78) следует, что по мере разрушения структуры с ростом I соотношение между систем без ПАВ и систем с добавкой ПАВ (/ = т11 о/ Ч 1) при фиксированных и одинаковых I различно. По мере увеличения интенсивности / (при одинаковых I) возрастает (рис. 78). [c.220]

    Эта серия исследований была выполнена на водных дисперсиях СаВ, алюминатов и силикатов кальция (СзА, Сз5, /Т = 0,35), в состав которых вводились добавки ПАВ трех типов лиофильный пластификатор — лигносульфонаты кальция СДБ неионогенные ПАВ — ОП-4, ОП-7, ОП-Ю кремнийорганические жидкости (си-ликонаты натрия и полиорганосилоксаны) — ГКЖ-10 и ГКЖ-94. [c.222]

    Осн. работы посвящены коллоидной химии. Детально изучил проблему лиофильности ТВ. дисперсных тел и физико-хим, механику водных и иеводных дисперсий минералов. Установил механизм взаимодействия различных дисперсных минералов с полярными и неполярными дисперсионными средами и определил толщину сольватных слоев иа их поверхности. Показал роль гидрофильности в процессах структурообразовапия. Разработал принципы получения новых дисперсных мат-лов (адсорбентов, наполнителей, структурообразовате-лей с заданными св-вами) и коллоидных систем. Открыл (1988) избирательную гетерокоагуляцию микроорг анизмов с коллоидными частицами металлов. [c.325]


Смотреть страницы где упоминается термин Лиофильные дисперсии водные: [c.238]    [c.285]    [c.338]    [c.338]    [c.336]   
Химия и технология плёнкообразующих веществ (1981) -- [ c.84 , c.85 ]




ПОИСК







© 2025 chem21.info Реклама на сайте