Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диаграмма, давление состав растворимые жидкости

    Фазовые диаграммы систем углеводородный газ — вода резко отличаются от фазовых диаграмм бинарных смесей углеводородных газов с жидкими УВ. Из фазовых диаграмм давление— состав систем этан — вода и метан — вода (рис. 26) можно видеть, что при температурах ниже 300°С граничные кривые газа и жидкости в системе этан — вода очень слабо сближаются, что объясняется их слабой взаимной растворимостью. [c.52]


    Зависимость взаимной растворимости жидкостей от температуры при постоянном давлении представляют на диаграммах состояния в координатах температура — состав. На рис. 127 приведена диаграмма состояния для системы вода — анилин, в которой взаимная растворимость двух жидкостей увеличивается с ростом температуры. На этой диаграмме кривая аКЬ, называемая кривой расслоения, делит диаграмму на две области гомогенную, лежащую выше кривой расслоения (незаштрихованная область), и гетерогенную, находящуюся под кривой расслоения (заштрихованная область). Фигуративные точки в гомогенной области, например точка (1, изображают состояние однофазной дивариантной системы (С = 2 — 1 + 1 =2). Любая фигуративная точка, лежащая внутри гетерогенной области, например точка О, изображает состояние двухфазной равновесной системы, обладающей при постоянном давлении одной степенью свободы (С = 2 — 2 -г 1 =1). [c.386]

    При изучении равновесия пар — жидкость в системах с ограниченной взаимной растворимостью жидкостей пользуются диаграммам состояния давление — состав (рис. 138, а и 139, а) и температура кипения — состав (рис. 138, б и 139, б). Каждая диаграмма кривыми пара и жидкости делится на ряд областей / — область пара // — область первого жидкого раствора (кривая ВЬА) III — область, второго жидкого раствора (кривая АЬВ) IV — область пара и первого жидкого раствора V — область пара и второго жидкого раствора VI — область двух жидких растворов. [c.397]

    Системы, состоящие из двух и более неограниченно растворимых жидкостей, имеют важное практическое значение. Такие системы наблюдаются в технологических процессах ректификации, экстракции и др. Зависимость некоторых свойств систем от их состава изучают с помощью диаграмм состояния давление насыщенного пара — состав, температура кипения-—состав. Диаграммы состояния наглядно показывают, что происходит в системах при нагревании, охлаждении и изменении их состава. [c.30]

    Давление насыщенного пара и диаграмма температура кипения — состав ограниченно растворимых жидкостей [c.197]

    Влияние давления. Приведенные выше диаграммы температура— состав соответствуют давлению системы, т. е. равновесному давлению паров, которое изменяется с температурой, а при существовании одной жидкой фазы — также с составом. Однако опытом установлено, что изменение растворимости малорастворимых жидкостей, вызванное внешним давлением, очень невелико и в большинстве случаев им можно пренебречь. Характер влияния давления можно определить из принципа Ле Шателье если растворение компонентов сопровождается увеличением объема, повышенное давление будет способствовать уменьшению растворимости, и наоборот. В табл. [c.25]


    Диаграммы состав — давление пара идеальных жидкостей с неограниченной взаимной растворимостью [c.203]

    Примером диаграммы состояния, описывающей систему, в которой возможно равновесное сосуществование двух фаз переменного состава, является диаграмма состояния двух жидкостей, частично растворимых одна в другой. Диаграмма такого тина изображена на рис. 20. По оси абсцисс этой диаграммы откладывается состав системы, а по оси ординат—температура. Давление на диаграммах, построенных таким образом, является величиной постоянной, оно должно быть больше давления паров, соответствующей любой точке диаграммы. [c.64]

    Под критической температурой растворения понимают ту температуру, при которой составы двух равновесных жидких фаз одинаковы. Для изображения зависимости взаимной растворимости жидкостей от температуры при постоянном давлении строятся диаграммы состояния в координатах температура— состав (диаграмма растворимости). Вид такой диаграммы для системы с верхней критической температурой растворения (точка К) показан на рис. 8.7. [c.164]

    Рассмотрим более подробно диаграмму давление пара — состав раствора для ограниченно растворимых жидкостей на рис. 32. По оси ординат отложено давление, а по оси абсцисс — состав раствора в молярных долях второго компонента. Чтобы проследить зависимость изменения давления пара от состава раствора, будем прибавлять второй компонент к первому, что на диаграмме соответствует передвижению по оси абсцисс ог Л 2=0 (в точке А) до Л 2=1 (в точке В). При этом следует иметь в виду, что для любой точки диаграммы при различных количественных соотношениях обоих компонентов общая масса раствора должна оставаться постоянной. [c.127]

    Примеры фазовых диаграмм двух- и трехкомпонентных смесей приведены в гл. 5 (рис. 5.20 и 5.30). Обычно на таких диаграммах переменными являются только температура и состав, так как влияние давления на конденсирующиеся фазы невелико. На рис. 5.28 показано влияние давления на изменение растворимости на примере системы твердая фаза — жидкость, однако подобное можно ожидать и для систем жидкость — жидкость. [c.352]

    Системы из двух жидкостей могут существовать в виде смесей с неограниченной и ограниченной растворимостью компонентов. Исследование этих систем представляет интерес для установления характера взаимодействия двух жидкостей и разделения их методами перегонки и расслоения. Состояние равновесия в этих системах отображается на диаграммах состав — давление пара, состав — температура кипения смеси и на диаграммах растворимости. [c.203]

    Неограниченно растворимые жидкости, подчиняющиеся закону Рауля. Диаграммы состояния давление — состав и температура — состав. Первый закон Коновалова. Идеальные растворы (см. 5.6) образуются из веществ, молекулы которых сходны по полярности, строению и химическому составу (бензол — толуол, дибромэтилен — дибромпропилен и др.). [c.93]

    Способность ограниченно смешивающихся жидкостей образовывать гетероазеотропы используется для разделения азеотропных смесей в системах с неограниченной взаимной растворимостью компонентов. Так, азеотропная-смесь в системе пиридин — вода, содержащая 57% пиридина и кипящая при 365 К, методом перегонки не может быть разделена на чистые компоненты. Однако если к такой азеотропной смеси добавить бензол, который образует с водой гетероазеотроп, кипящий при более низкой температуре (342 К), то при перегонке водных растворов пиридина в присутствии бензола можно получить чистый пиридин, а вода вместе с бензолом в виде гетероазе-отропа перейдет в дистиллят. Диаграмма на рис. 139 отвечает системе, в которой гетероазеотроп не образуется. В такой системе во всем интервале концентраций пар богаче жидкости компонентом Б, имеющим более низкую температуру кипения при заданном давлении. Такие системы характеризуются тем, что состав пара (точка О), равновесного с жидкими растворами (точки С и D), не является промежуточным между составами жидких растворов. Кроме того, температура равновесной трехфазной системы не будет самой низкой температурой, при которой существует равновесие пар—жидкость. Систему с ограниченной взаимной растворимостью компонентов второго типа перегонкой можно разделить на два чистых компонента. Примерами систем данного типа могут служить системы вода — фенол, гексан — анилин, вода — никотин, бензол — ацетамид, метанол — тетраэтил-силан и др. [c.398]

    Прежде всего рассмотрим диаграмму конденсированного состояния тройной системы А—В—С, образованной компонентами А, В, С, которые в расплавленном состоянии обладают полной взаимной растворимостью, т. е. могут образовать тройной жидкий раствор, в каком бы количественном отнощении их ни смещивали в твердом же состоянии они совсршенно-нерастворимы один в другом, так что их затвердевщий сплав представляет механическую смесь. В общем случае затвердевание такой расплавленной смеси происходит следующим путем охлаждение " жидкости, замедление, связанное с выделением одного из компонентов, более сильное замедление, связанное с выделением двух компонентов, и наконец, остановка, связанная с одновременной кристаллизацией всех трех компонентов, после чего следует охлаждение целиком затвердевшего сплава. Кривая охлаждения в этом случае будет состоять из пяти кусков 1) наклонный кусок — охлаждение жидкости, 2) более пологий ход кривой — кристаллизация одного компонента, 3) еще более пологий ход кривой — кристаллизация двух компонентов, 4) горизонтальный, т. е. параллельный оси времени, прямолинейный кусок — кристаллизация трех компонентов, 5) опять понижающийся кусок кривой — охлаждение затвердевшего сплава. Применяя правило фаз и прини.мая во-внимание, что давление остается постоянным, приходим к выводу, что процесс кристаллизации трех компонентов нонвариантный (собственно, условно нонвариантный), поэтому он должен происходить при постоянной температуре и постоянном составе жидкости вплоть до полного затвердевания, каков бы ни был состав исходного расплава. Это так называемый процесс эвтектической кристаллизации кристаллизующаяся же при этом жидкость называется тройной жидкой эвтектикой. [c.73]


    Одной из главных особенностей систем соль — вода является практическое отсутствие твердых растворов на основе льда (исключение представляет фтористый аммоний) и твердых растворов воды в солях или гидратах. Поскольку при атмосферном давлении водные растворы солей не расслаиваются на две жидкие фазы, диаграммы растворимости в этом случае могут быть представлены тремя простейшими видами (рис. 1). Диаграмма первого вида отражает образование безводной соли ( 5 ), второго — гидрата (51), растворимого конгруэнтно, третьего — гидрата (5 ), растворимого инконгруэнтно. Буквами V, Ь в. 8 обозначены области существования пара, жидкости и твердого вещества буквой 5 о обозначен лед. Поле V от поля V Ь отделяет кривая кипения. В случае нелету- ей соли эта кривая показывает зависи- сть температуры кипения от состава явора состав пара при этом постоян-— он содержит только воду. [c.3]

    При ПОМОЩИ рис. 14-2 можпо установить максимальное насыщение жидкости, соприкасающейся с газом. Если состав и парциальное давление газа определяются точкой С, то максимальное насыщение жидкости выражается точкой Р, так как давление равновесия Е над этой жидкостью равно парциальному давлению компонента в газе. Кроме того, можно установить преимущества абсорбции под давлением. Если общее давление газа увеличить в несколько раз, то соответствегшо увеличится и парциальное давление абсорбируемого компонента. Из диаграммы ясно, что тогда увеличится и максимальная концентрация этого компонента в жидкости. Поэтому прн абсорбции под давлением возможно получение концентрированных растворов из бедных газов, содержащих небольшой процент абсорбируемого компонента. Если на диаграмму нанесены кривые равновесия для нескольких температур, то-можно заметить, что с ростом температуры увеличивается наклон кривой следовательно, при определенном парциальном давлении комгю-нента в газе растворимость его будет увеличиваться с уменьшением температуры. [c.748]


Смотреть страницы где упоминается термин Диаграмма, давление состав растворимые жидкости: [c.276]    [c.26]    [c.391]    [c.126]    [c.299]    [c.266]   
Химическая термодинамика (1950) -- [ c.613 ]




ПОИСК





Смотрите так же термины и статьи:

Давление диаграмма

Давление жидкостей

Жидкость растворимые

Растворимость в жидкостях под давление

Растворимость жидкостей

Растворимость жидкости в жидкости



© 2025 chem21.info Реклама на сайте