Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия в конденсированных фазах

    Суть этого процесса заключается в следующем. Нагретый до сравнительно невысоких температур (порядка 30-70 °С) исходный раствор (горячий) подается с одной стороны гидрофобной микропористой мембраны. Вдоль другой стороны мембраны движется менее нагретый (холодный) растворитель (обычно вода). Поскольку мембрана гидрофобна, а размеры пор ее достаточно малы (порядка одного микрометра и менее), то жидкая фаза в поры мембраны не проникает. Испаряющийся с поверхности горячего раствора пар (поверхностью испарения в этом случае являются образующиеся на входе в поры мениски раствора) проникает в поры мембраны, диффундирует через слой воздуха в поре и конденсируется на поверхности менисков холодной жидкости. При этом в порах создается разрежение, что ускоряет процесс испарения и, следовательно, повышает его эффективность. Так как температура исходного раствора невысока, то для проведения процесса мембранной дистилляции можно применять низкопотенциальную тепловую энергию - тепло нагретой после холодильников воды, отходящих газов (например, выхлопных газов двигателей внутреннего сгорания и др.), геотермальных вод и, наконец, солнечную энергию. [c.338]


    Кл-м , энергия ионизации 12,6 эВ, сродство к протону 7,1 эВ. При взаимод. молекулы В. с др. атомами, молекулами и нонами, в т.ч. с другими молекулами В. в конденсир. фазах, эти параметры изменяются. [c.394]

    Часть молекул, оторвавшихся от поверхности жидкости, впоследствии снова конденсируется, другая же часть остается в газообразной фазе. Таким образом, на поверхности жидкости всегда происходят одновременно два процесса испарение и конденсация. Если эти процессы происходят в замкнутом пространстве, то, в конце концов, скорости испарения и конденсации выравниваются, и между жидкой и газообразной фазами наступает состояние динамического равновесия. Давление, которое молекулы пара, находящегося в равновесии с жидкой фазой, оказывают па стенки сосуда и па поверхность жидкости, называется давлением насыщенного пара жидкости. Давление пара является функцией кинетической энергии молекул и числа их в единице объема (т. е. плотности) и выражается основной формулой кинетической теории газов [c.166]

    При выводе изотермы адсорбции Ленгмюра неявно делаются следующие допущения 1) адсорбируемый газ в газовой фазе ведет себя как идеальный 2) адсорбция ограничивается мономолекулярным слоем 3) поверхность однородна, т. е. все адсорбционные центры имеют одинаковое сродство к молекулам газа 4) молекулы адсорбата не взаимодействуют друг с другом 5) адсорбированные молекулы газа локализованы, т. е. не передвигаются по поверхности. Первое предположение справедливо при низких давлениях. Второе почти всегда перестает соответствовать реальности при увеличении давления газа. Как показано на рис. 8.6, когда давление газа приближается к давлению насыщенного пара, пар начинает неограниченно конденсироваться на всех поверхностях, если краевой угол 0 равен нулю. Третье допущение неудовлетворительно, потому что реальные поверхности неоднородны разные грани кристалла обладают разным сродством к молекулам газа, а ребра, трещины и дефекты кристалла образуют дополнительные адсорбционные центры. Неоднородность приводит к уменьшению энергии адсорбции по мере заполнения поверхности. Неправильность четвертого допущения была показана экспериментально, когда обнаружилось, что в некоторых случаях теплота адсорбции может увеличиваться с увеличением поверхностной концентрации адсорбированных молекул. Этот эффект, противоположный тому, к которому должна приводить неоднородность поверхности, обусловлен взаимным притяжением адсорбированных молекул. Пятое допущение неправильно, так как имеется ряд доказательств того, что поверхностные пленки могут быть подвижными. [c.251]


    Уравнение Кельвина рассматривает энергетический баланс конденсирующейся капли. По мере образования капли (или зародыша) ее свободная поверхностная энергия изменяется от О до . Если свободная энергия одной молекулы равна и в паровой фазе и в жидкой фазе, а общее число молекул, находящихся в [c.825]

    Более предпочтительное изменение технологии разделения реакционной смеси заключается в подаче ее в паровой фазы. В этом случае не нужно конденсировать реакционные пары (исключается как водная, так и рассольная конденсации). А это приводит к значительному сокращению энергии, расходуемой в системе в целом. Кроме [c.308]

    Факторы, влияющие на скорость сублимации, такие, как рельеф и чистота поверхности, изменение молекулярного состава при переходе в паровую фазу, приводят к отличию числа ударяющихся о поверхность частиц от числа конденсирующихся на ней при равновесии, т,е, имеется энергетический барьер для конденсации частиц на поверхности. Если энергия активации при сублимации не равна нулю, то значение коэффициента а не будет постоянным для вещества, так как микрорельеф и чистота поверхности могут быть различными для разных образцов вещества. [c.77]

    К. с. позволяют изучать не только внутримол. динамику, но и межмолекулярные взаимодействиА. Из них получают данные о пов-стях потенциальной энергии, внутр. вращении молекул, движениях атомов с большими амплитудами. По К. с. исследуют ассоциацию молекул и структуру комплексов разл. природы. К. с. зависят от агрегатного состояния в-ва, что позволяет получать информацию о структуре разл. конденсир, фаз. Частоты колебат переходов четко регистрируются для мол. форм с оче п. малым временем жизни (до 10 " с), напр, для конформеров при высоте потенциального барьера в неск. кДж/моль, Поэтому К. с. применяют для исследования конформац. изомерии и быстро устанавливающихся равновесий. [c.432]

    Энтальпии сублимации обычно определяются по температурной зависимости давления пара над кристаллической фазой, как описано в разделе П1.2. Однако, если имеются соответствующие таблицы, энтальпии сублимации, так же как и энтальпии испарения, могут в принципе определяться непосредственным измерением количества энергии, требуемой для испарения данного количества вещества, в калориметрах, подобных тем, которые используются для определения теплоемкости. Можно собрать испаряемое вещество в виде газа и измерить его объем. Его можно также абсорбировать химически или конденсировать до жидкости или твердого состояния и затем взвесить. [c.36]

    Вид спектра поглощения определяется как природой образующих его атомов и молекул, так и агрегатным состоянием в-ва. Спектр разреженных атомарных газов-ряд узких дискретных линий, положение к-рых зависит от энергии основного и возбужденных электронных состояний атомов. Спектры молекулярных газов-полосы, образованные тесно расположенными линиями, соответствующими переходам между колебательным и вращательным энергетич. уровнями молекул. Спектр в-ва в конденсиров. фазе определяется не только природой составляющих его молекул, ио и межмол. взаимодействиями, влияющими на структуру электронных уровней. Обычно такой спектр состоит из ряда широких полос разл. интенсивности. Иногда в нем проявляется структура колебат. уровней (особенно у кристаллов при охлаждении). Прозрачные среды, напр, вода, кварц, не имеют в спектре полос поглощения, а обладают лишь границей поглощения. [c.14]

    ГАЗОФАЗНАЯ ПОЛИМЕРИЗАЦИЯ, способ проведения полимеризации, при к-ром мономер находится в газовой фазе, а продукт р-цни образует твердую дисперсную или жидкую фазу. Скорость Г. п, зависит от скорости диффузии мономера из газовой фазы в зону р-ции и к активным центрам роста цепи в конденсиров. фазе от р-римости и сорбции мономера полимерной фазой от уд. пов-сти частиц катализатора, нанесенных на твердый сорбент при гетерог. полимеризации. В зависимости от способа инициирования рост цепей может происходить в газовой фазе с послед, агрегацией образовавшихся макромолекул нли в частицах полимера. Для мн. систем найдено отрицат. зиачение эффективной энергии активации полимеризации, что обусловлено уменьшением концентрации мономера, адсорбированного полимерными частицами или растворенного в них, с повышением т-ры. Отсутствие р-рителя приводит к снижению роли передачи цепи и росту средней мол. массы полимера. Теплообмен в Г. п. определяется теплопередачей от твердых частиц полимера к газу и зависит от отношения пов-сти частиц к их объему. [c.473]

    Как правило, такие р-ции экзотермичны и имеют малую энергию активации (< 10 кДж/моль). Если они протекают в газовой фазе, их скорость определяют вероятностью соударений частиц или газокинетич. сечением (см., напр.. Ионы в газах). В конденсир. фазе, напр, в р-ре, реагирующие частицы А и В, сталкиваясь с молекулами р-рителя, беспорядочно перемещаются до тех пор, пока не произойдет их встреча в одной структурной ячейке жидкости. Такую встречу можно рассматривать как образование диффузионной пары [А В] в результате взаимной поступат. самодиффузии частиц. Р-ция происходит в две последоват. стадии [c.100]


    Энергия излучения, переданная среде, расходуется на образование ионов (атомных и молекулярных), вторичных (выбитых) электронов с энергией, достаточной для ионизации еще неск. молекул среды (т. наз. энергетические, или 8-электроны), сверхвозбужденных состояний. Расстояние, на к-ром происходит каждая послед, ионизация, прогрессивно уменьшается, достигая неск. нм при потере энергии вторичным электроном до величины, меньшей потенциала ионизации молекул среды. Вторичные электроны, не производящие ионизации, имеют еще достаточно энергии для возбуждения молекул. Взаимод. их со средой приводит к появлению возбужденных состояний молекул и ионов и дaJ ьнeйшeмy снижению энергии вторичных электронов до нек-рой пороговой энергии электронного возбуждения Е . Электроны с энергией Ец < Е < кТ (< Г-тепловая энергия среды, постоянная Больцмана, Т-абс. т-ра) наз. электронами не-довозбуждения. В конденсир. фазах на физ. стадии происходит также образование коллективных возбуждений-плазмонов, за время существования к-рых (10 -10 с) энергия, составляющая от 15 до 25 эВ, локализуется на отдельных молекулах, в результате чего происходит ионизация последних или переход их в высоковозбужденные состояния. [c.152]

    Влияние среды на P. . Совр. развитие теории P. . связано с изучением влияния среды на р-ции, протекающие в конденсир. фазе. (См. также Реакции в растворах). Согласно классич. подходу (С. Глесстон, К. Лейдлер, Г. Эйринг, 1941), определяют изменения энергии начального состояния реагентов и переходного состояния под влиянием среды (р-рителя) в рамках теории активир. комплекса. Роль среды сводится к созданию дополнит, потешщала, модифицирующего ППЭ соответствующей р-ции в газовой фазе. Этот потенциал м.б. учтен в совр. квантовохим. расчете. Модификация ППЭ потенц. полем среды м. б. очень велшса для р-ций с переносом заряда в полярном р-рителе, напр. S 2. [c.215]

    Перенос электрона может происходить не только при взаимод. возбужденных молекул с донором или акцептором электрона, но и путем прямой фотоионизации молекул. Для фотоионизации требуется, чтобы энергия фотона превыщала потенциал ионизации, что обычно существенно больще, чем для возбуждения молекулы. В конденсир. фазе энергия, необходимая для фотоионизации, понижается по сравнению с газовой фазой на 1-2 эВ вследствие поляризации среды образующимися ионами. При фотоионизации (напр., аминов в замороженных р-рах) оптич. и радиоспектроскопич. методами наблюдается образование их катион-радикалов. Элект- [c.181]

    Количеств, характеристики К.— обычно плотность энергии когезии (ПЭК) или величина, равная корню квадратному из ПЭК, наз. параметром растворимости Гильдебрандта (см. Растворимость). ПЭК эквивалентна работе удаления находящихся в единице объема молекул (или атомов) на бесконечно большое расстояние друг от друга. ПЭК для конденсиров. фаз находят, напр., по теплоте испарения (сублимации), коэф. термич. расширения или сжимаемости, критич. давлению и др. Иногда ПЭК можно рассчитать исходя из плотности и хим. состава фазы. Когезионные характеристики в-в использ. при разработке рецептур полимерных и других многокомпонентных материалов. [c.264]

    В конденсированных (безгазовых) системах ведущая Г. экзотермич рнция протекает в твердой или жидкой фазе с образованием конденсиров. продуктов газофазные в-ва либо не участвуют в р-ции, либо не влияют на распространение фронта Г. Примеры подобных процессов-Г. нек-рых термитных составов (смесей порошков оксидов и металлов-восстановителей), самораспространяю-щийся высокотемпературный синтез, фронтальная полимеризация. Для Г. безгазовых смесей характерна высокая плотность выделения энергии, скорость Г. для разл. систем принимает значения от 10 до 10 см/с и постоянна в щироком интервале изменения давления отсутствует диффузия продуктов в исходную смесь, изменение концентрации реагентов происходит только в пределах зоны р-ции (зоны i и i на рис. 2 сливаются в одну). Такая структура фронта Г обусловливает макс. кол-во избыточной энтальпии в прогретом слое в-ва перед зоной р-ции. В сочетании с высокой температурной чувствительностью скорости р-ции (сверхкритич. значения энергии активации р-ции Е) это может привести к возникновению автоколебаний фронта Г с резкими пульсациями т-ры и скорости Г. Если пов-сть фронта велика, колебания отд точек теряют синхронность и возникают пространственно неоднородные нестационарные эффекты, напр, т наз. спиновое Г., при к-ром р-ция локализуется в небольшом ярком пятне, движущемся по спирали с пост скоростью в сторону несгоревшего в-ва (рис 5) При Г. смесей порошков, напр, металла с углеродом, часто возникают широкие (намного превышающие зону прогрева) зоны тепловыделения, обусловленные сильным торможением р-ции продуктами. Интенсивная [c.597]

    Значение G для продуктов Р.-х. р. орг. в-в в конденсиров. фазе существенно зависит от природы в-ва. Напр., при у-ра-диолизе жидкого циклогексана осн. продукты — водород (G = 5,6), циклогексен (3,2) и дициклогексил (1,7) выходы продуктов радиолиза бензола очень малы, поскольку бензол может поглощать энергию не разлагаясь. [c.489]

    Чтобы использовать уравнение (1У-6), предположим, что и того же самого начального состояния 1А(г) + В т)] переход в то же са ое конеч ное состояние С(г)] осуществляется изотермически при помощ реакция между твердыми телами следующим образом. Сначала конденсируются фазы Лий, которые образуют твердое вещество С превращающееся затем в газ. Изменение свободной энергии на этом пути находится из pja мoтpe ния следующих процессов. Вещество А обратимо и изотермически сжимается до давления, соответствующего равновесию с твердой фазо 51 [c.73]

    По мере движения газа основных струй в осевом направлении из его элементов, попавших в приосевую область, начинают формироваться струи противотока, располагающиеся в межструйном пространстве и взаимодействующие со струями основного потока. Формирование струй противотока идет из внутренних слоев основного потока, обедненного конденсирующимся компонентом, т.е. противоток должен иметь значительно меньшую концентрацию в паровой фазе этого компонента. По мере продвижения противотока к диафрагменному отверстию масса его увеличивается, возрастает энерго- и массообмен со струями основного потока, что может привести к росту концентрации в нем конденсирующегося компонента, т.к. противоток распространяется в межструйное пространство основных струй до периферийной области и может частично захватывать слои газа, содержащие и жидкую фазу сконденсированного компонента. Поэтому степень очистки или содержание конденсирующихся компонентов в парогазовом потоке и в противотоке во многом должна зависеть от конструктивных параметров закручивающего устройства (Р, ЬхЬ, п), технологических параметров (Т,, л) и режима работы вихревой трубы. [c.164]

    Когда чистая жидкость В находится в равновесии со своим паром, свободная энергия жидкого и парообразного вещества В должна быть одинаковой. Испарение и конденсация происходят с одинаковой скоростью. Если к жидкости добавляется небольшое количество нелет чего растворенного вещества А, свободная энергия или способность к испарению вещества В в растворе понижается, поскольку некоторая часть молекул раствора, достигающая поверхности раздела жидкости и газа, относится к веществу А, а не к В. Однако обратная тенденция, конденсация пара в жидкость, остается неизменной, потому что в паровой фазе отсутствуют молекулы типа А, которые могли бы помещать молекулам типа В конденсироваться. При постоянной температуре частота, с которой молекула жидкости достигает поверхности с достаточной кинетической энергией, чтобы перейти в паровую фазу, одинакова в чистом веществе Вив растворе, если считать, что раствор обладает идеальными свойствами (рис. 18-11). Однако предполагается, что растворенное вещество А является нелетучим. Поэтому не все молекулы, достигающие поверхности с указанной энергией, могут на самом деле покинуть жидкость. Если 1% молекул в растворе принадлежит к типу А, то давление пара В составит лишь 99% давления пара чистого вещества В. Это утверждение основано на законе Рауля  [c.139]

    Характерной особенностью процесса ректификации является то, что паровая и жидкая фазы находятся в состоянии насыщения. Причем температура пара Тт выше температуры жгщкости Т], что означает наличие одновременно протекающих процессов конденсации и испарения в элементарном объеме, при этo i из.менение температур фаз происходит по линии насыщения. Это позволяет сделать вывод, что вследствие того, что Т2>Т1, на границе раздела фаз пар конденсируется, отдавая тепло жидкой фазе, в результате чего жидкость испаряется. Поскольку из.менение внутренней энергии системы происходит только за счет внешнего воздействия, 1ю никак не за счет внутренних процессов перехода вещества из фазы в фазу, то. можно записать [c.234]

    А. Источник теплоты. Источником теплоты в топках является в основном энергия, выделяемая при горении топлива. Для топлив, содержа[ЦИх водород, различают два значения теплоты сгорания теплота сгорания, определенная в нредположении, что вся влага, выделенная в процессе 1орения, конденсируется и охлаждается до 288 К теплота сгорания, определенная в предположении, что выделяемая влага остается в паровой фазе. Источником кислорода для горения обычно является воздух. Для гарантии полного сгорания топлива в топку подается большее количество вос-духа, чем это требуется по стехиометрическим соотношениям, Как правило, подается на 10 % больше воздуха для газообразного топлива, на 15—20 % для жидкого топлиаа и на 20 % или более для распыленных твердых топлив. В табл, 1, 2 приведены состав, теплота сгорания, потребность в воздухе для наиболее распространенных видов газообразных, жидких и твердых топлив, [c.111]

    Ранее указывалось, что чем более конденсированы и высокоплавки асфальтены в данном битуме, тем большей сольватирующей способностью должна обладать смолистая фаза, чтобы удержать асфальтены в диспергированном состоянии. Таким образом, можно установить прямую связь между результатами проб на однородность, характеризующую возрастающую тугоплавкость асфальтенов, и результатами судативных опытов, которые отражают возрастающую в вышеприведенной последовательности энергию сольватации жидкой фазы. [c.99]

    При выращивании эпитаксиальных слоев кристаллизация значительно облегчается за счет в 1ияния поверхности подложки. Свободную поверхность кристалла считают одним из видов несовершенств. Дефектность совершенной (идеальной) поверхности заключается в том, что здесь нарушается непрерывность решетки. Идеальная поверхность подложки по сравнению с ее объемом обладает некоторым избытком свободной энергии. Она действует ориентирующим образом на атомы, которые конденсируются из газовой фазы. Если же атомы дос- [c.139]

    Средняя энергия водородной связи НР в газовой фазе около 33,5 кДж/моль, максимальная—56,5 кж/Дмоль. Фтористый водород в отличие от других галогеноводородов легко конденсируется в жидкость (температура кипения 19,6 °С), что также связано с наличием водородной связи. В жидком НР энергия водородной связи равна 29 кДж/моль. [c.358]

    ДИНАМИКА ЭЛЕМЕНТАРНОГО АКТА хим реакции, изучает превращение отдельной молекулы или комплекса взаимодействующих молекул из заданного начального квантового состояния I в определенное конечное состояние / (от англ mitial и final соотв) Для процессов в газовой фазе элементарные акты-гл обр столкновения молекул, сопровождающиеся передачей энергии, мономолекулярными превращениями или бимолекулярными р циями, в конденсир средах (жидкостях н твердых телах) элементарные акты взаимод частиц рассматриваются с учетом взаимод системы с окружающей средой Теоретич исследование элементарных актов основано на изучении методами классич или квантовой механики особенностей движения (динамики) электронов и атомных ядер, составляющих систему частиц, к-рые участвуют в элементарном акте (одна молекула в случае мономолекулярных превращений, две-при бимолекулярных р-циях, три-при тримолекулярных) [c.66]

    Величина А х равна работе, которая должна быть затрачена для удаления электрона от иона галогена эта величина известна под названием сродства электрона к атому. Ее можно онределить измерением равновесных концентраций М, X и X, например с помощью масс-спектрометра, в струе пара соли, испускаемой накаленной вольфрамовой нитью ]24]. В четвертой стадии конденсируется пар металла Ьш — теплота сублимации металла, определяемая по изменению давления нара в зависимости от телшературы (гл. XV). На пятой стадии происходит соединение двух атомов галогена в газовой фазе с образованием, одной молекулы О — выражает энергию диссоциации молекулы (гл. X и XX). В шестой стадии газообразный галоген конденсируется, переходя в кидкое или твердое состояние Lx, — теплота испарения или сублимации на 1 г-моль. Последней стадией является соедпнение твердого металла и кристаллического (или жидкого) галогена в кристаллическую соль. представляет теплоту, выделяющуюся при этой химической реакции. Из перечисленных семи стадий складывается замкнутый круговой процесс, к которому можно применить уравпение, выведенное в гл. VI  [c.495]

    Адгезия (прилипание) — это взаимодействие между приведенными в контакт поверхностями конденсиро ванных фаз разной природы. Ек ли две взаимно нераство римые жидкости либо жидкость и твердое тело, либо наконец, два твердых тела приведены в тесный контакт то под действием межмолекулярных сил они прочно при липают друг к другу, так что для их разделения нужно произвести определенную работу. Как правило, адгезия и смачивание сопутствуют друг другу и соответствующим образом характеризуют межфазиое взаимодействие. Адгезия обусловлена стремлением системы к уменьшению поверхностной энергии, следовательно, является самопроизвольным процессом. [c.73]

    Рассмотренная технологая характеризуется высокой эффективностью использования энергии. Подводимое тепло рекуперируется на 95 %, теплота реакции обеспечивает получение пара среднего давления, в дефлегматорах ректификационных колонн 7 п 8 генерируется пар низкого давления. Однако для повыйтения эффективности использования энергии еще есть резервы. Так, аппарат 11 при колонне 7 должен быть дефлегматором, позволяющим только частично конденсировать пар для получения флегмы продукт в паровой фазе следует сразу подавать в печь а в колонне 4 следует организовать полное отделение бензола, тогда отпадает необходимость в колонне 7. В ректификационной колонне 9 можно не конденсировать продукт, а направлять его в паровой фазе сразу в реактор. Возможны и другие варианты технологических схем получения этилбензола алкилированием бензола на цеолитных катализаторах (процесс фирмы Union ОН , процесс фирмы Mobih, США). Они отличаются возможностью использования вторичной энергии, регенерации катализатора и т. д. [c.295]

    Для подсчета свободные энергии продуктов реакций, выраженные в калориях на моль, множат на соответствующие уравнению (I) стехиометрические коэфициенты и из этой суммы вычитают сумму произведений свободных энергий веществ, вступающих в реакцию, на соответствующие стехиометрические коэфициенты. Свободные энергии берут для того состояния вещества, в котором оно фи-гурирует в реакции. То-есть для реакций, полностью протекающих в газовой фазе AZ i, берут для газовой фазы, для реакций в растворах применяют zlZ для жидких веществ. Если одно или несколько веществ при реакции конденсируются в несме-шивающиеся между собой фазы и мы не учитываем в уравнениях (2) и (4) их концентраций в газовой фазе, для этих веществ берется относящимися к той фазе, в виде которой оно реагирует в нашей системе. Например для реакции (5) [c.157]

    Вторая проблема может быть решена при оформлении технологического режима на первой стадии за счет уменьшения кинетической энергии потока (11 Г Н)-плазмы, снижения давления. Кроме того, в процессе очистки фторида водорода от технологической пыли на четвертой стадии возможны компактирование и возврат аэрозолей в металлодиэлектрический реактор. Как известно, четвертая стадия (выведение и сбор второго товарного продукта — безводного фторида водорода) осуш ествляется одновременно с тремя первыми. Вывод газообразного фторида водорода производят через фильтрационный модуль, состоятпий из многослойных регенерируемых металлокерамических элементов, не иронускаюш,их микронные и субмикронные порошки и аэрозоли и тем самым обеспечивающих защиту процесса от бесконтрольного проникновения пирофорного продукта за пределы технологической зоны. Далее поток безводного фторида водорода, очищенный от дисперсной фазы, конденсируют, собирают в виде жидкости в транспортные емкости и направляют на реализацию или на подпитку электролизных ванн для получения элементного фтора. Поскольку операция очистки фторида водорода от аэрозолей на металлокерамических фильтрах, сделанных из анизотропной керамики, является очень важной и принципиально новой операцией, сфера применения которой не ограничивается рамками настоящей главы, ниже будут рассмотрены основные научно-технические принципы этой технологии и техники. [c.615]


Смотреть страницы где упоминается термин Энергия в конденсированных фазах: [c.349]    [c.631]    [c.7]    [c.219]    [c.255]    [c.119]    [c.418]    [c.349]    [c.489]    [c.631]    [c.11]    [c.151]    [c.17]    [c.60]    [c.81]    [c.161]    [c.251]   
Коллоидная химия 1982 (1982) -- [ c.249 ]




ПОИСК





Смотрите так же термины и статьи:

Конденсированная фаза внутренняя энергия

Конденсированные ВВ

Пар конденсирующийся

Поверхностная энергия и межмолекулярные взаимодействия в конденсированной фазе



© 2024 chem21.info Реклама на сайте