Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление нафталинов

    Катализатор представляет собой модификацию контакта, применяемого для получения ангидрида фталевой кислоты. Одпако условия окисления очень отличаются от условий окисления нафталина, так как бензол значительно устойчивее против окисления. Вследствие жестких условий процесса снижается выход малеинового ангидрида, составляющий 50—60% от теоретического, тогда как выход фталевого ангидрида достигает 86—88%. [c.268]


    Получение фталевого ангидрида окислением нафталина (с пористыми фильтрами) [c.256]

    Главным путем получения фталевого ангидрида было окисление нафталина, но в последнее время для этой цели все больше используют менее дорогой о-ксилол  [c.428]

    При окислении нафталина или о/) по-ксилола кислородом воздуха с 70—80 %-ным выходом получается фталевый ангидрид высокой чистоты. Сообщается также [347], что сырьем для производства фталевого ангидрида могут служить и другие полициклические ароматические углеводороды, содержащиеся в каменноугольной смоле. Процесс окисления нафталина или орто-ксилола во фта- [c.589]

    Изменения эффективности каталитических процессов, осуществляемых при искусственно создаваемом нестационарном состоянии катализатора, можно, по-видимому, ожидать всегда, если эти процессы протекают по раздельному механизму. В частности, по такому пути протекают такие окислительно-восстановительные реакции, как полное окисление водорода, СО, углеводородов и многих других органических веществ при повышенных температурах, а также парциальное окисление олефинов, спиртов, ароматических соединений. Осуществляя каким-либо образом взаимодействие окислителя с восстановленным катализатором й затем — взаимодействие исходного вещества (в присутствии окислителя или без него) с вводимым в зону реакции окисленным катализатором, можно часто увеличить активность и (или) избирательность за счет того, что в нестационарном режиме катализатор может поддерживаться в состоянии, оптимальном по энергии связи кислорода с поверхностью. Примером этого, кроме уже названных процессов, может служить окисление нафталина во фталевый ангидрид на ванадиевом катализаторе [30]. Для этого процесса активность катализатора становится тем большей, чем больше степень окисленности 0, а избирательность процесса практически не зависит от величины 0 нри [c.40]

    В работах [14, 15] описывается применение катализаторов из корунда, пропитанного расплавом пятиокиси ванадия или смеси пятиокиси ванадия с трехокисью молибдена, соответственно для окисления нафталина и о-ксилола во фталевый ангидрид и бензола в малеиновый ангидрид. [c.183]

    При неполном окислении нафталина образуется фталевый ангидрид  [c.130]

    При окислении нафталина для получения 1 моль фталевого ангидрида теоретически необходимы 9 атомов кислорода при окислении о-ксилола—только 6. Поэтому тепловой эффект при окислении о-ксилола во фталевый ангидрид заметно меньше, чем при окислении нафталина в тот же продукт (при условии достижения в обоих случаях теоретической конверсии). Выходы же незначительны из-за большой конверсии исходного сырья в продукты полного окисления (горения). В настоящее время основное количество (около 90%) фталевого ангидрида получают из нафталина. [c.173]


    Примерами реакций такого типа, если принять их упрощенную схему, являются окисление нафталина или этилена и каталитический крекинг. [c.403]

    Ион металла при этом восстанавливается в одну из низших валентных форм. В результате совместного действия кислорода и углеводорода ионы металлов часто находятся в разных валентных состояниях, что в среднем соответствует некоторой дробной величине. Так, ион ванадия при окислении нафталина воздухом имеет среднюю валентность 4,3 вместо 5 в УгОб. Очевидно, что состояние иона металла определяется окислительно-восстановительными свойствами среды и зависит от соотношения кислорода и углеводорода, от наличия водяных паров и т. д. При этом в начальный период работы катализатор постепенно формируется в состояние, стабильное для данных условий синтеза, а варьирование условий может изменить его активность и селективность. [c.412]

    Итак, представленная на рис. 1Х-9—1Х-11 полная картина влияния продольного перемешивания па оптимальную высоту реакционной зоны позволяет, в частности, установить границы последней, как и в случае степени превращения. Это снова может быть проиллюстрировано на примере окисления нафталина. [c.410]

    Наконец, окисление бензола в малеиновый ангидрид и окисление нафталина во фталевый ангидрид имеет первый порядок по кислороду и от нулевого до первого по ароматическому углеводороду (в зависимости от соотношения реагентов). Эти реакции также тормозятся образующимися ангидридами [c.415]

    Расширение слоя, предот- 30 Окисление нафталина 37 [c.523]

    Окисление нафталина представляет собой случай, при котором нельзя пренебрегать образованием хинона, несмотря на высокие выходы фталевого ангидрида, получающегося в виде конечного продукта на катализаторах УгОд [153]  [c.176]

    В. А. Ройте р. Каталитическое окисление нафталина, Изд. Нау-кова Думка , Киев, 1963. [c.171]

    Для окисления нафталина во фталевый ангидрид используют катализатор из плавленой пятиокиси ванадия, получаемой в виде гранул неправильной формы. Пятиокись ванадия в виде порошка или кусков контакта расплавляют в графитовых тиглях в электропечах при 690 °С. [c.197]

    Фталевый ангидрид, как известно, находит широкое применение в производстве высококачественных алкидных смол и в настоящее время получается окислением нафталина. [c.34]

Рис. 1У-22. Константы скорости реакции окисления нафталина Рис. 1У-22. <a href="/info/9216">Константы скорости реакции</a> окисления нафталина
Рис. 1У-23. Линии производства и поглощения тепла для окисления нафталина (к примеру 1У-7) Рис. 1У-23. <a href="/info/150726">Линии производства</a> и <a href="/info/1007275">поглощения тепла</a> для <a href="/info/9693">окисления нафталина</a> (к примеру 1У-7)
    Фталевый ангидрид получают при окислении воздухом о-ксилола или нафталина. В первом случаев качестве катализатора применяют пятиокись ванадия при температуре 482—621 °С и времени контактирования 0,1—0,15 сек. Новые катализаторы для окисления нафталина содержат 10% УзОз, от 20 до 30% Ка504, остальное—кремнезем. Обычная установка с неподвижным слоем работает при температуре 340—375 °С и избыточном давлении 0,5 ат время контактирования 4,2 сек, объемная скорость 0,07 катализатора. Установка с кипящим слоем ра- [c.333]

    Как следует из табл. 58,. о-ксилол является наиболее высококипящим из всех изомеров ксилола. Его применяют для получения фталевого ангидрида. Процесс основан, как и окисление нафталина, на газофазном окислении над ванадиевым контактом (оронит-процесс). Равным образом и /г-ксилол представляет большую ценность как исходный материал для получения те-рефталевой кислоты, применяемой в производстве волокна (териленовое волокно в Англии, декроновое в США, тревира в Германии). С этой целью смесь м- и п-крезолов охлаждают до —60° и выкристаллизовавшийся п-крезол отделяют центрифугированием. Выход га-ксилола ограничивается образующейся эвтектикой, состоящей из 88% J t-к илoлa и 12% ге-ксилола. [c.110]

    Производство малеинового а нгидрида окислением бутилена.. Как известно, малеиновый ангидрид в настоящее время получают окислением бензола кислородом воздуха в присутствии катализатора—пятиокиси ванадия, аналогично получению фталевого ангидрида окислением нафталина. Процесс этот весьма сложен и идет с низкими выходами порядка 50% от теоретического. В последнее время исследована возможность получения малеинового ангидрида окислением бутилене. В создаваемом комплексе нефтехимических производств намечается осуществить синтез малеинового ангидрида из бутилена. Дальнейшая переработка его будет вестись путем совместной конденсации с ( алевым ангидридом и дизтиленгликолем. [c.372]


    Окисление нафталина Диффузия решеточного кислорода [52, 53] Ванадий-калий-суль-фат-силикагелевый Т = = 340° Р = 0,1 МПа 10-20 0,25-7,5 [c.21]

    Ильина 3. П., Тимошенко В. И., Яковлева Т. Н. н др. Влияние валентного состояния ванадия на скорость окисления нафталина на ванадий — калий — сульфат — силикагелевом катализаторе//Труды четвертого международного симпозиума Гетерогенный катализ . Ч. 2.—Варна Болгарская АН.— [c.27]

    Окисление является следующей побочной реакцией, более часто наблюдающейся при сульфировании полициклических углеводородов и.пи полиалкилированных производных бензола, особенно нри повышенных температурах. Этому типу реакции отдавалось предпочтение на более ранней стадии развития промышленного процесса окисления нафталина олеумом до фталевого ангидрида в присутствии ртути в качестве катализатора. [c.525]

    В качестве характерной конструкции контактного аппарата с катализатором, загруженным в трубках, приведен аппарат для каталитического окисления нафталина или ортоксилола во фталевый ангидрид нри температуре 400—430°С [23]. Реакция окисления нафталина идет с больншм выделением теплоты и в то же время требует тонкого регулирования температуры отклонение температуры от оптимальной на 4—6°С уже вызывает существенное нарушение процесса. Указанное обстоятельство и определило конструкцию аппарата. Он представляет собой теплообменную трубчатку с трубками малого диаметра 30x2 мм, в которые загружается катализатор. В межтрубном пространстве циркулирует промежуточный теплоноситель — расплав солей (смесь нитрата и нитрита натрия). Применение жидкого теплоносителя позволяет вести процесс в очень мягком температурном реж41ме — разность температур между теплоносителем и реакционной зоной не превышает б—8°. [c.209]

    Код-902. Катализатор окисления нафталина состав 10% VgOj, 33% K2SO4, 55% кремнезема выпускается в виде порошка, 85% которого проходит через сито с размером отверстий 1,147 мм и 45%—через сито с размером отверстий 0,074 мм, а также в виде таблеток размером 3,2 хЗ,2 мм типичная объемная скорость 1400 ч , температура 455 °С. [c.315]

    Для нанесения окиси ванадия необходимо выбирать абсолютно инактивный носитель, иначе значительная часть сырья окисляется до воды и СО2. Подходящим носителем для окиси ванадия является пемза. Описан также снликагелевый носитель, обработанный сульфатом калия. Одной фирмой разработан процесс окисления нафталина или ортео-ксилола в псевдокинящем слое катализатора [348]. Преимуществами процесса в псевдокипящем (флюидном) слое являются меньший расход воздуха и более эффективный отвод тепла из реакционной зоны. [c.590]

    В самом деле, проведение в промышленном масштабе окисления о-ксилола во фталевый ангидрид зависит от разности в стоимости продукта, полученного этим способом и окислением нафталина. Вместе с тем получить достаточно чистый п-ксилол также трудно, поэтому необходимо сравнивать эффективность производства терефталевой кислоты окислением п-ксилола с эффективностью ее получения другими методами. [c.173]

    Большое распространение получил метод производства фтале-ного ангидрида окислением нафталина в псевдоожиженном слое [c.357]

    Наличие зонной энергетической структуры электронов решетки окисла может существенно изменить механизм взаимодействия последнего с органической молекулой. Наличие низкорасположенных основных или примесных уровней и ловушек электронов в виде дефектов и дырок приводит, как известно, к большей вероятности затягивания электронов в решетку, что особенно легко протекает для я-элек-тронов [22]. В этом случае первым актом катализа будет разрыв С = С связи, и каталитический процесс, как показано Ройтером [23 ] для окисления нафталина на УаОа, полностью протекает в сорбционном слое, не затрагивая решетку. [c.156]

    Чувствительность катализаторов к воздействию высоких температур связана с рядом различных явлений. Прежде всего повышение температуры размораживает дефекты решетки катализаторов (как полупроводниковых, так и металлических), приближая систему к равновесию. Такое изменение дефектного состояния решетки неизбежно приводит к изменению активности катализатора в большинстве случаев к ее понижению [47 ]. Далее, повышение температуры и приближение ее к температуре плавления материала вызывает значительное ускорение самодиффузии в твердом веществе и, как следствие этого, — яв.чение спекания, приводящее к уменьшению поверхности катализатора. Как указывалось ранее, это во многих случаях приводит к понижению активности катализатора. Примеров такого рода явлений описано очень много можно указать на работу Борескова с сотрудниками но катализатору парофазного гидролиза хлорбензола [48 ] и работу Битенаж по алюмосиликатным катализаторам [49]. Еще одним следствием повышения температуры может быть превращение каталитически активных соединений в неактивные. Например, при температуре выше 500° С в смешанном катализаторе окисления нафталина во фталевый ангидрид происходит взаимодействие сульфата калия с сульфатом ванадия и образуется каталитически неактивный ванадат калия. Кро е указанных явлений, при высоких температурах может происходить растрескивание или расплавление всей массы катализатора, или носителя. [c.199]

    На рис. Х.З показан реактор, предложенный Кикотем, по принципу совпадающий с реактором Ройтера и Корнейчука для окисления нафталина [12]. Он представляет собою свернутый в цилиндр плоский змеевик, помещенный в баню с псевдооткиженным песком. В точках перегиба впаиваются диафрагмы и пробоотборники. Такая конструкция дает возможность в одном опыте получить ряд точек, в данном случае пять, на кинетической кривой. Изотермичность процесса, кроме хорошего теплоотвода, обеспечивается малым диаметром трубки. [c.407]

    Пример IV- . Окисление нафталина в кинящеи слое. Этот пример характеризует выбор рабочей температуры и условий охлаждения для сильно экзотермической реакции, сопровождаемой побочными экзотермическими реакциями. [c.146]

    Другие величины, использованные для расчета окисления нафталина всздухом при атмосферном давлении, приведены ниже  [c.148]

    Фталевый ангидрид сравнительно стабилен к дальнейшему окислению, поэтому реакцию ведут до практически полной конверсии нафталина. Выход 1,4-нафтохинона и малеинового ангидрида настолько мал, что их невыгодно выделять из полученных смесей, а основным побочным процессом является окисление до СОг. Наиболее эффективным катализатором окисления нафталина оказался УгОб с добавкой Кг504 на силикагеле, обеспечивающий при 360— 400 °С выход фталевого ангидрида 90%. [c.430]

    По технологии окисление нафталина и окисление о-ксилола аналогичны, и существуют установки, на которых можно перера-ба"ывать оба вида сырья. Процесс ведут при атмосферном давлении и большом избытке воздуха, обеспечивающем концентрацию реагента 0,7—0,9% (об.), находящуюся вне пределов взрывоопасных концентраций в смеси с воздухом. Наиболее распространены многотрубные реакторы со стационарным слоем катализатора, охлаждаемые кипящим водным конденсатом или чаще нитрит-нит-рагной смесью, с производством пара. В последнее время большое Енямание уделяется эффективной утилизации тепла, которого хватает для удовлетворения всех потребностей установки, и часть генерируемого пара (до 3,6 т на 1 т фталевого ангидрида) используют для других нужд. [c.430]

    В большинстве технических каталитических процессов небольшое количество катализатора способствует превр1ащению весьма зна1 [и-тельных количеств реагирующих веществ. Так, одна массовая часть катализатора в производстве серной кислоты вызывает превращение 1(И, окисления нафталина во фталевый ангидрид - 1(Р, в производстве азотной кислоты окислением аммиака -10 мае. частей реагирующего вещества. [c.91]


Библиография для Окисление нафталинов: [c.27]   
Смотреть страницы где упоминается термин Окисление нафталинов: [c.11]    [c.215]    [c.20]    [c.162]    [c.406]    [c.422]    [c.396]    [c.707]    [c.22]   
Органическая химия Издание 3 (1980) -- [ c.124 , c.215 ]




ПОИСК







© 2025 chem21.info Реклама на сайте