Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислоты жирного ряда

    Ароматические карбоновые кислоты можно превратить в амины тем же путем, что и карбоновые кислоты жирного ряда, т. е. через их амиды (расщепление по Гофману) или азиды (расщепление по Курциусу). Реакции протекают совершенно так же, как и в жирном ряду (стр. 162). [c.567]

    При гидролизе жиров или масел образуются глицерин и карбоновые кислоты, соответствующие радикалам Кь Кг и Эти кислоты обычно называют жирными кислотами или кислотами жирного ряда. Наиболее распространенные жирные кислоты содержат от 12 до 22 атомов углерода. Интересно, что почти во всех жирных кислотах имеется четное число атомов углерода, включая атом углерода карбоксильной группы. Некоторые из наиболее распространенных жирных кислот перечислены в табл. 25.1. Масла, получаемые главным образом из растений (кукуруза, подсолнечник, арахис, соя), состоят преимущественно из ненасыщенных жирных кислот. В отличие от них жиры животного происхождения (сливочное масло, говяжий и свиной жир) содержат преимущественно насыщенные жирные кислоты. [c.459]


    Эфиры дифенилолпропана и жирных карбоновых кислот. Описано получение сложных эфиров дифенилолпропана и кислот жирного ряда нагреванием дифенилолпропана с хлорангидридами этих кислот  [c.39]

    Нафтеновые кислоты представляют собой жидкие или кристаллические вещества, труднолетучие и малорастворимые в воде. Низшие представители этих кислот обладают летучестью с водяными парами. Нафтеновые кислоты имеют запах, напоминающий запах соответствующих по молекулярному весу кислот жирного ряда. [c.95]

    Карбоновые кислоты способны корродировать многие металлы и сплавы сталь, свинец, цинк, олово, медь. Наибольшей коррозионной агрессивностью обладают низшие кислоты жирного ряда. С увеличением молекулярного веса кислот коррозионная активность их падает. [c.26]

    Стеариновая кислота СН, (СНа) СООН — насыщенная органическая кислота жирного ряда нормального строения мол. вес 284,47 плотность около 0,92 г см (0,85 при 70° С) темп. пл. 69,3 С темп. кип. 360° С (с раз- [c.678]

    Жиры являются сложными эфирами высокомолекулярных кислот жирного ряда и глицерина. [c.27]

    За последние годы опубликовано значительное число работ [51—55], в которых показано, что нефтяные кислоты как типично карбоновые образуют разнообразные производные (соли, эфиры, амиды и т. п.) подобно жирным кислотам. Аналогию в химических свойствах нефтяных кислот и алифатических легко объяснить, если исходить из предположения, что карбоксильная группа большей части содержащихся в нефтях карбоновых кислот соединена с циклическими элементами структуры молекулы (полиметиленовые или ароматические кольца) не непосредственно, а через алифатический мостик различной длины иными словами, если рассматривать нефтяные кислоты как кислоты жирного ряда, у которых один или несколько атомов водорода в углеводородной цепи замещены циклическими углеводородными радикалами. В этом случае строение нефтяных карбоновых кислот можно выразить одной из следующих структур  [c.319]

    АЛКИЛИРОВАНИЕ ОДНООСНОВНЫХ ОРГАНИЧЕСКИХ КИСЛОТ ЖИРНОГО РЯДА БУТЕНОМ-2 [55] [c.23]

    Непредельные карбоновые кислоты жирного ряда присоединяют водород только в присутствии катализатора, чем объясняются неудачи ранних попыток восстановления жидких растительных масел в твердые жиры. Низшие карбоновые кислоты гидрируются в присутствии N1 легко, но с нарастанием углеродной цепи скорость реакции снижается, хотя протекает быстрее, чем у ароматических кислот  [c.356]


    Для получения всех этих производных пользуются теми же методами, что и для получения производных кислот жирного ряда. [c.339]

    Всеми способами, известными для кислот жирного ряда (окисление альдегидов, омыление нитрилов и т. д.). [c.320]

Рис. 97. Влияние поверхностно-активных веществ на -потенциал керамических мембран (кислоты жирного ряда). Рис. 97. <a href="/info/230918">Влияние поверхностно-активных веществ</a> на -потенциал керамических мембран (<a href="/info/1013">кислоты жирного</a> ряда).
    Нафтеновые кислоты представляют собой карбоновые кислоты циклического строения и являются производными главным образом цикланов, в частности, пятичленных. В некоторых нефтях существуют нафтеновые кислоты би-, три- и тетра-циклического строения, а по данным А. Е. Чичибабина также карбоновые кислоты жирного ряда. [c.36]

    В присутствии органических веществ перенапряжение водорода в области обычного разряда изменяется в том интервале потенциалов, где эти вещества адсорбируются на поверхности электрода. В присутствии спиртов или кислот жирного ряда т] возрастает в области адсорбции этих веществ (рис, 137). После их десорбции г, -кривые в растворах кислоты с добавкой органического вещества и без добавки совпадают, причем потенциал десорбции, полученный из поляриза- [c.255]

    В присутствии спиртов или кислот жирного ряда т] возрастает в области адсорбции этих веществ (рис. 137). После их десорбции 1], lg I — кривые в растворах кислоты с добавкой органического вещества и без добавки совпадают, причем потенциал десорбции, полученный из поляризационных измерений, хорошо совпадает с данными электрокапиллярных кривых или кривых дифференциальной емкости. Аналогичным образом повышают перенапряжение органические катионы, например катионы тетрабутиламмония. Эти катионы также десорбируются с поверхности, но при более отрицательных потенциалах, вследствие чего их эффект наблюдается в более широком интервале потенциалов (см. рис. 137). [c.271]

    Химический состав и свойства масел. Жиры и масла — это полные эфиры трехатомного спирта глицерина и различных одноосновных кислот жирного ряда. Полные эфиры глицерина называют также триглицеридами  [c.292]

    Образование производных. Аналогично кислотам жирного ряда, ароматические кислоты образуют галогенангидриды, ангидриды, сложные эфиры, амиды и другие производные, представляющие собой продукты замещения гидроксила в карбоксильной группе соответствующими атомами или группами. О важнейших из этих производных см. при отдельных представителях ароматических кислот (стр. 157 и сл., 380 и сл.). [c.378]

    Для получения ароматических кислот применимы все способы получения кислот жирного ряда. Наиболее важны следующие методы. [c.379]

    Нафтеновые кислоты представляют собой карбоновые кислоти циклического строения, главным образом производные пятичленных нафтеновых углеводородов. В отдельных нефтях найдены би-, три- и тетрациклические нафтеновые кислоты, а также и карбоновые кислоты жирного ряда. Содержание нафтеновых кислот в нефтях невелико. Наименьшее количество нафтеновых кислот содержится в парафинистых нефтях и их фракциях, наибольшее — в смолистых нефтях. В Советском Союзе наибольшее количество нафтеновых кислот найдено в нефтях о-ва Сахалин (4,8 вес. % в одоптинскон и 2,8 вес. % в горской), в нефтях Азербайджана (1,67 вес. % в балаханской, 1,34 вес. % в бинагадинской и 0,3 вес. % в биби-эйбатской), Северного Кавказа (1,0 вес. % в грозненской беспарафиновой) и Эмбы (0,8 вес. % в доссорской). Распределение нафтеновых кислот по фракциям крайне неравномерно. Преимущественно они сосредоточены в легких и средних газойлевых фракциях, значительно беднее ими бензино-керосиновые и тяжелые дистилляты. [c.31]

    Кислородные соединения керосиновых фракций нефти представлены в ис-новном нефтяными кислотами и фсиола.ми [15]. В незначительных количествах в топливных фракциях обнаруживаются эфиры, спирты, альдегиды, кетопы. Наиболее богаты нефтяными кислотами нефти нафтенового основания (их содержится до 1 /о в керосиновых фракциях). Нефтяные кислоты представляют собой карбоновые кислоты, в котор.ых карбоксильная группа соединена с углеводородными радикалами циклического или алифатического строения. Преобладают кислоты с пятичленными насыщенными циклами (нафтеновые кислоты), значительно меньше кислот жирного ряда. Нефтяные кислоты керосиновых фракций имеют насыщенный характер, число углеродных атомов обычно i2— i6, по молекулярной массе от 180 до 210 и плотности (0,98—0,99) они превосходят углеводороды топлива. В нафтеновых (фракция 195—330 °С) и парафиновых (фракция 180—330 °С) нефтях обнаружены в разных соотношениях изопреноидные кислоты состава С,2—Сго с метильными заместителями в положении 2,6 2,6,10 2,6,10,14 3,7 3,7,11 [157]. [c.78]


    Взаимодействие углеводородов ароматического ряда с хлор-ангидридами кислот жирного ряда — получение Лхирно-аромати-чески с кетонов  [c.253]

    Большая часть работ, посвященных выделению из нефтей кислот — алифатических, ароматических и смешанных —относится к 1930—1940 гг. А. Е. Чичибабин в бакинской нефти обнаружил диэтилпропионовую и изоамилуксусную кислоты в румынской нефти найдены уметилвалериановая и 6-метилкапроновая кислоты. Многочисленные кислоты жирного ряда выделены из легких дистиллятов калифорнийской нефти, в том числе муравьиная, уксусная, пропионовая, масляная, изомасляная, валериановая, изо-валериановая, энантовая, метилкапроновая, капроновая и др. Из высших кислот жирного ряда обнаружены миристиновая, пальмитиновая, стеариновая и арахиновая. [c.36]

    Жнры, как известно, представляют собой сложные эфиры глицерина и разнообразных кислот жирного ряда. Среди последних встречаются предельные и непредельные кислоты, гидрокси- и кетокислоты с длиной цепи С12—С20 и различной степенью непре-дельности. Практически все жирные кислоты животных и растительных жиров построены на основе неразветвленной алифатической цепи. Очень небольшие количества отдельных представителей оазветвлеииых кислот ряда Сд и Сга были выделены из бактерий и жировых тканей животного прои( хождения. Из некоторых микроорганизмов и грибов выделены высокомолекулярные (З-гидр-оксикислоты с длинной боковой цепью в -положении. [c.31]

    В концентрированных растворах (98—100% ДЭГ), скорость коррозии, в отличие от более разбавленных растворов, непрерывно увеличивается с повышением температуры вплоть до температуры кипения. Это связано с тем, что в концентрированных растворах ДЭГ температура кипения выше температуры разложения 165°С, при которой происходит выделение агрессивных низкомолекулярных органических кислот муравьиной, уксусной, присутствие которых усиливает коррозию углеродистой стали. Образование низкомолекулярных кислот в результате термического и химического разложения диэтиленгликоля приводит к подкислению раствора. Контакт с кислородом воздуха значительно увеличивает скорость образования органических кислот жирного ряда, поэтому удаление кислорода воздуха из системы установки регенерацпи ДЭГ может явиться одним из методов уменьшения коррозии оборудования в средах, содержащих растворы ДЭГ. [c.173]

    Среди наиболее низкокипящих нафтеновых кислот, выделенных из нефтяных дистиллятов (но не из сырой нефти), присутствуют кислоты жирного ряда состава СпНапОа- [c.312]

    Получение ис-р-фенилгидразида адипиновой кислоты. При температуре кипения фенилгндразина (243° С) многие одно-и двухосновные кислоты жирного ряда образуют фенилгидразиды  [c.258]

    Описано такн<е сульфирование [452] п-этоксифенилмочевины 2H50 6H4NHG0NH2. Сульфированием фенетидида, синтезированного из высокомолекулярной кислоты жирного ряда, получен детергент [460 б]. При обработке ацетаминофенилового эфира лчлсусной кислоты серной кислотой ацетильная группа, связанная с кислородным атомом, отщепляется и сульфирование происходит в орто-положении к гидроксилу. [c.71]

    В. В. Марковников и его сотрудник Косович впервые показали, что нафтеновые кислоты относятся к нафтенам так же, как кислоты жирного ряда к парафинам. При восстановлении нафтеновые кислоты переходят в нафтены. Наличие нафтенового кольца в нафтеновых кислотах, было затем с полной убедительностью доказано Асханом. Однако вопрос о строении этого кольца оставался открытым. [c.74]

    Кроме нафтеновых кислот, в нефтяных дистиллятах обна- ружены также кислоты жирного ряда состава СдНгпОа. Наиболее ранние указания (1883 г.) на это имеются в работе В. В. Марковникова и В. Оглоблина [116], которые упоминают о выделении уксусной кислоты и о присутствии некоторых высших жирных кислот во фракциях, полученных от разгонки кавказских сырых нефтей. Жидков [117] в 1899 г. при изучении кислот из грозненских нефтей нашел в них низшие алифатические кислоты. Однако большинство работ об идентификации алифатических кислот появилось после 1925 г., особенно за десятилетие 1930—1940 гг. [c.76]

    А. Е. Чичибабин [118] в бакинской нефти обнаружил диэтилпро-пионовую и изоамилуксусную кислоты в румынской нефти найдены у-метилвалериановая и 6-метилкапроновая кислоты. Многочисленные кислоты жирного ряда выделены из легких дистиллятов калифорнийской нефти, в том числе муравьиная, уксусная, нропионовая, масляная, изомасляная, валериановая, изовалериа-новая, энантовая, метилкапрононые, капроновая и др. Из высших кислот жирного ряда в газойле японской нефти [119] обнаружены миристиновая, пальмитиновая, стеариновая и арахиновая кислоты. Такие же кислоты найдены и в веретенном дистилляте бориславской нефти [120]. В 1932 г. Ланкин [121] определил общее содержание алифатических кислот в нефтяных фракциях, не пытаясь при этом их идентифицировать. Он установил, что в кислотах из грозненских нефтей содержится около 3,6% жирных кислот с температурой кипения от 200 до 300°. [c.76]

    Опыты Гарди и Дубльдей [3], Бира и Боудена [4] по определению коэффициента статического и кинематического трения при различном материале трущихся поверхностей и чистых индивидуальных веществ в качестве смазочных материалов дали очень много для понимания сущности процессов, происходяпщх на поверхности. В качестве материалов трущихся поверхностей применялись сталь, висмут и стекло, а в качестве смазочных веществ — углеводороды парафинового ряда, спирты и кислоты жирного ряда различного молекулярного веса. [c.145]

    Исследования [2] окисления алкилнафталинов и алкилбензолов показывают, что при наличии цепи, содержаш ей до пяти углеродных атомов, главными продуктами окисления ароматических углеводородов являются фенолы. При дальнейшем увеличении длины цепей главными продуктами окисления будут кислоты. Так, при окислении н-гептилбензола в качестве основных продуктов были получены [23] бензойная кислота и кислоты жирного ряда различного молекулярного веса. Эти наблюдения показывают изменение процесса окисления, вызываемого повышением числа углеродных атомов в алкильном радикале, и объясняют приведенные выше данные окисления пропил-, нонил- и децилбензолов. Это не значит, что при окислении, например, децилбензола смолы не образуются, но их образуется ничтожное количество по сравнению с кислотами. [c.271]

    Нефтяные кислоты представляют собой карбоновые кислоты, у которых карбоксильная группа (-СООН) соединена с радик шом алифатического или циклического строения. В нефтях содержатся преимушественно карбоновые кислоты с пятичленным нафтеновым радиксшом — нафтеновые кислоты. При нагревании нафтеновых кислот до 200—250°С может наблюдаться их термическое разложение с образованием более устойчивых низкомолекулярных кислот жирного ряда. Поэтому в прямогонных бензинах содержатся главным образом кислоты жирного ряда, а в бензинах крекинга нафтеновые кислоты полностью отсутствуют. [c.78]

    Б е и 3 а м и д СсН.. СОКНг представляет собой бесцветное хорошо кристаллизующееся соединение т. пл. 130°. Он получается из аммиака и эфира бензойной кислоты или хлористого бензоила, т. е. теми же методами, которые применяются для получения амидов кислот жирного ряда (стр. 277). Более новый метод получения амидов [c.646]

    В качестве веществ, которые могут стабилизовать дисперсию, испытывали канифоль и ее мыла, кислоты жирного ряда эмульгатор ОП-10, цис-1,4-иолибутадиен, олифу, талловое масло, ароматическое масло ПН-6. Диоперсии готовились в шаровой мельнице. Продолжительность обработки составляла 18—24 час при скорости вращения мельницы 50 об мин. [c.209]

    Существует несколько имеющих важное значение поверхностноактивных веществ, в которых содержится две различные гидрофильные группы. Например, сульфоэтерифицированные кислоты жирного ряда содержат в одной молекуле карбоксильную группу и группу эфира серной кислоты. Неполные эфиры и амиды сульфоянтарной кислоты содержат карбоксильные группы и алкилсульфогруппы. Соединения этого типа не выделены в отдельный класс, а размещены по разным разделам в соответствии с характером наиболее важной полярной группы. Так, сульфоэтерифицированные жирные кислоты в большей степени напоминают родственные им эфиры серной кислоты, чем мыла карбоновых кислот. По этой же причине неполные эфиры и амиды сульфоянтарной кислоты включены в класс алкилсульфокислот. [c.60]

    Мы рассмотрим лишь собственно ароматические кислоты, в которых карбоксильные группы непосредственно связаны с бeнзoJп -ным ядром. Как и кислоты жирного ряда, в зависимости от числа карбоксильных групп ароматические кислоты могут быть одноосновными и многоосновными из последних наиболее важны двухосновные ароматические кислоты. [c.377]

    Фталевая кислота и ее производные. Фталевая кислота o- gH4(GOOH) 2 (стр. 377). Кристаллическое вещество (блестящие листочки) растворяется в горячей воде. В промышленности получается окислением нафталина (стр. 349). При нагревании, не плавясь, подобно двухосновным кислотам жирного ряда с карбоксилами в положении 1,4 (стр. 175) о-фталевая кислота выделяет молекулу воды и образует внутренний ангидрид с устойчивым пятичленным циклом он называется фталевым ангидридом [c.381]


Смотреть страницы где упоминается термин Кислоты жирного ряда: [c.258]    [c.150]    [c.288]    [c.19]    [c.448]    [c.310]    [c.232]    [c.320]    [c.575]   
Аналитическая химия промышленных сточных вод (1984) -- [ c.0 ]

Органическая химия 1965г (1965) -- [ c.169 ]

Органическая химия 1969г (1969) -- [ c.188 ]

Органическая химия 1973г (1973) -- [ c.179 ]

Органическая химия Издание 4 (1981) -- [ c.176 ]




ПОИСК





Смотрите так же термины и статьи:

Азотсодержащие вещества жирного и ароматического ряда Реакции пикриновой кислоты

Алкилирование одноосновных органических кислот жирного ряда бутеном

Альдегиды жирного ряда реакция с фуксинсернистой кислотой

Влияние полярных групп на константы диссоциации кислот ароматического и жирно-ароматического ряда

Глава IX- Карбоновые кислоты и оксикислоты жирного ряда

Карбоновые кислоты жирного ряда

Каучук дибромид с непредельными кислотами жирного ряда

Кислоты ациклического (жирного) ряда

Кислоты жирного ряда летучие

Кислоты жирного ряда нелетучие Се раздельное хроматографическое определени

Кислоты сульфоновые ряда жирного

Константы диссоциации кислот жирно-ароматического ряда

Непредельные жирные кислоты с двумя двойными связями ряда

Непредельные жирные кислоты с одной двойной связью ряда

Непредельные жирные кислоты с пятью двойными связями ряда

Непредельные жирные кислоты с тремя двойными связями ряда СлН

Одноосновные (монокарбоновые) предельные кислоты жирного ряда

Определение одноосновных кислот жирного ряда

Предельные жирные кислоты ряда СлН

Предельные одноосновные кислоты жирного ряда

Производные насыщенных и ненасыщенных поликарбоновых кислот жирного ряда

Производные одноосновных кислот жирного ряда

Свойства карбоновых кислот и оксикислот жирного ряда

Углеводороды жирного ряда взаимодействие с концентрированной азотной кислотой

Эфиры карбоновых кислот жирного ряда



© 2025 chem21.info Реклама на сайте