Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металл. Уран металлический

    Уран можно штамповать и прокатывать. Рекомендуется обрабатывать уран давлением (ковать) в состоянии а-фазы, т. е. в состоянии фазы, стабильной при комнатной температуре, причем надо его нагревать до состояния, возможно более близкого к Р-фазе, Как и другие металлы, уран с повышением температуры становится менее твердым и. более ковким, однако р-уран очень тверд и хрупок. Из металлического урана путем штамповки и прокатки изготовлялись стержни 10102]. [c.709]


    За исключением реакторов, работающих на гомогенном горючем, большинство современных исследовательских и энергетических реакторов используют уран в металлическом состоянии в виде сплава или чистого металла. Металлический уран можно получать высокотемпературным восстановлением галогенидов или окислов электролизом расплавленных солей или реакцией с активными металлами. Обычно металлический уран получают восстановлением его тетрафторида кальцием или магнием. [c.108]

    На кривых 2, 3 -R 4 имеются наклонные участки, характеризующиеся сильной поляризацией. По-видимому, эти участки соответствуют образованию сплава урана с цирконием. Когда соотношение выделяемых металлов нарушается, потенциал катода определяется более электроотрицательным металлом — ураном. Интересно заметить, что при содержании урана в расплаве 1 вес. % (кривая 2) участка, соответствующего выделению металлического урана, нет. [c.22]

    Образование гидридов внедрения используют для получения порошков чистых металлов. Например, металлический уран и другие актиниды, а также очень чистые титан и ванадий пластичны, и потому приготовить из них порошки простым растиранием металла практически нельзя. Чтобы лишить металл пластичности, его насыщают водородом (в металлургии эта операция называется охрупчиванием металла). Образовавшийся гидрид легко растирают в порошок. Да уже при насыщении урана водородом происходит разрушение металла и образуется порошок. Его затем нагревают в вакууме, удаляют водород и получают порошок чистого урана. [c.55]

    Подобно урану и нептунию, плутоний является весьма активным металлом. При повышенной температуре он быстро окисляется тонкоизмельченный металл пирофорен. Металлический плутоний вступает в обычные реакции, образуя галогениды при непосредственном взаимодействии с галогенами и нитриды при взаимодействии с аммиаком. Он легко растворяется в соляной кислоте любой концентрации, в 85%-ной фосфорной и концентрированной трихлоруксусной кислотах. Обнаружено, что плутоний не растворяется в азотной кислоте любой концентрации, даже при действии в течение нескольких часов. Концентрированная серная кислота с металлическим плутонием пе реагирует, а разбавленная взаимодействует медленно. Очевидно, что металлический плутоний способен пассивироваться. Металл инертен и по отношению к щелочным растворам. [c.299]

    Органические кислоты. Хотя муравьиная, уксусная, про-пионовая и масляная кислоты (разбавленные или безводные) и не реагируют с металлическим ураном, но в присутствии хлористого водорода или соляной кислоты начинаются быстрые экзотермические реакции, заканчивающиеся образованием соответствующих солей четырехвалентного урана [31]. Ацетат урана может также быть получен действием уксусного ангидрида или ацетил-хлорида на металл. Уран реагирует с бензойной кислотой в эфирном растворе с образованием бензоата урана (IV). [c.145]


    К третьей группе следует отнести те металлы, которые пока еще не удается получить из водных растворов в металлическом состоянии [7]. Это молибден, вольфрам, уран, ниобий, титан, тантал. Для металлов третьей группы характерна повышенная реакционная способность по отношению к среде и образование поверхностных соединений. На окисленной поверхности дальнейшее восстановление металла резко затрудняется и значительно облегчается восстановление ионов-водорода. В силу этого металлы третьей группы выделяются на катоде в виде тонкого слоя окиси или гидроокиси. Поэтому электролитически не удается получить эти металлы в металлическом состоянии. [c.14]

    Анализируемое вещество переводят в труднолетучее соединение предварительной химической обработкой, например, металлический уран в и.,08> алюминий в А1. 0.,, кальций в СаСО , вольфрам и некоторые другие металлы — в карбиды и т, д. [c.251]

    Из всех актиноидов только торий и уран в природе встречаются в относительно больших количествах, представляющих практический интерес. Содержание тория и урана в земной коре соответственно равно 8-10" и 3-10" вес.%. Элементы 93—103 получают искусственным путем, но практический интерес представляют нептуний и плутоний. Торий добывают главным образом из монацитового песка, представляющего собой смесь фосфатов тория и лантаноидов. Получают металлический торий из его галидов восстановлением активными металлами при высокой температуре или разложением иодида тория на раскаленной вольфрамовой нити. Возможно получение тория методом электролиза. [c.72]

    Сейчас металлический уран (или окисел иОг, карбид иСг) для целей ядерной энергетики синтезируют в огромных количествах. В ходе ядерной реакции выделяется большое количество энергии, которую отводят чаще всего с помощью воды. Вода ири этом становится радиоактивной, примеси, в ней содержащиеся, также становятся радиоактивными. Поэтому в ядерных реакторах имеется несколько контуров воды, отводящей тепло, с тем, чтобы сделать воду или другой теплоноситель (например, жидкие щелочные металлы), используемую в залах электростанций, нерадиоактивными. Последовательные контуры находятся друг с другом в тесном соприкосновении для теплообмена. [c.228]

    Определение углерода в металлическом плутонии проводят сожжением навески 30—50 мг металла в кислороде и измерением разности электропроводности раствора Ва(ОН)г до и после-поглощения выделившегося СОг (П. Н. Палей и сотр., 1948 г.). Этот метод подобен методу определения углерода в уране [9]. [c.383]

    Уран представляет собой очень плотный металл, по внешнему виду напоминающий сталь. Металлический уран существует в трех кристаллических модификациях (а-, р- и у-структуры). Радиус атома урана в металлическом состоянии равен 1,421 А [799]. При высокой температуре уран может быть подвергнут ковке. [c.10]

    Растворы гидроокисей щелочных металлов слабо действуют на металлический уран, но при прибавлении к раствору щелочи перекиси водорода уран растворяется с образованием растворимых пер-уранатов. Растворение металлического урана в ряде кислот и других растворителях подробно описано Ларсеном [691]. [c.11]

    Металлический уран является промышленным продуктом, но в особых случаях бывает необходимо получить его в лаборатории. Восстановление металла производится в основном металлотермическим методом, реже — электролизом расплава. В качестве восстанавливаемого вещества используется главным образом UF4, кроме того, хлорид урана (IV) и другие галогениды. Восстановителями служат магний и кальций, реже натрий и калий. В лабораторной практике применимы методы, в которых количество металла составляет от 50 мг до 10 кг. Способы восстановления урана можно разделить на три группы  [c.1282]

    Метод применен для определения серы в металлах [466, 1449], стали [211, 1018, 1380], сплавах [466, 984], селене [1304], хроме [467, 1447], кобальте [1380], титане [1114], металлическом уране и его соединениях [1204], окиси алюминия [324], в топливе и золе [1156[, нефти [2265], лаках [548], органических [967, 1087, 1305] и биологических [1185, 2248, 1297] материалах, для определения сероводорода и сульфидов в природных водах [839, 1177], почвах [937], атмосферном воздухе [631, 1459]. [c.120]

    Оксихинолин отличается от других оксихинолинов пространственным расположением гидроксильной группы по отношению к азоту кольца. В результате такого расположения ионы многих металлов образуют с 8-оксихинолинами нерастворимые клешнеобразные соединения. Такие металлы, как медь, цинк, кадмий, алюминий, висмут, уран, марганец, железо (трехвалентное) и никель, наряду с некоторыми другими, осаждаются в виде клешнеобразных соединений с 8-оксихинолином из его раствора, содержащего уксуснокислый натрий. Вследствие этого 8-оксихинолин является одним из наиболее ценных органических реагентов для определения металлических ионов. Это соединение известно также под названием оксина оно было предложено в качестве аналитического реактива Ханом [449] и Бергом [450]. Имеются хорошие обзоры работ с применением этого реагента [4506, 451]. [c.104]


    Хил [581] также подтвердил выводы Кольтгофа и Харриса, что в среднекислых растворах UOa дает три волны восстановления на ртутном капельном электроде, U (IV) — одну волну, а кислые растворы и (III) — одну волну окисления, которая по величине и соответствует третьей волне на полярограмме Ю1 . Кроме того, в слабокислых растворах ]01 Хил [581] заметил за волной еще одну большую волну, имеющую в хлоридных растворах Ei/ —1,85 б, а в сульфатных —2,2 в. Эта волна обусловлена, по его мнению, восстановлением U (III) до металла. Из этих данных следует, что уран в твердом виде осаждается на поверхности электрода. Хотя до последнего времени считалось, что растворимость урана в ртути ничтожно мала, однако в последние годы найдено, что металлический уран с очень чистой поверхностью, полученный в отсутствие кислорода, путем разложения гидрида урана, амальгамируется, образуя массу серебряного цвета, похожую на другие амальгамы, и что амальгама с содержанием урана < 1 % жидкая и устойчива на воздухе [549]. Однако следует отметить, что ни нам, ни другим исследователям не удалось наблюдать эту волну. [c.168]

    Выявление дефектов в легких материалах, находящихся в массивных изделиях из тяжелых металлов (свинец, уран и т.п.). Выявление дефектов в металлических изделиях большой толщины [c.86]

    Металлический уран приготовлен Пелиго, исследовавшим и многие другие соединения урана. Для этого хлористый уран U P смешивается с Na l и КС1 и металлическим Na, накаливается в тигле получается порошок, который в сильном жару сплавляется в сплошной металл. Уран разлагает кислоты, выделяя водород. [c.296]

    Вероятно, самой важной формой, в которой уран используется в реакторах, является металл. Для работы многих типов реакторов необходима высокая концентрация атомов урана, а металл обладает наибольшей плотностью. Физические и особенно химические свойства урана таковы, что требуют значительной изобретательности исследователей для того, чтобы разработать совершенные промышленные процессы получения металла. При повышенных температурах уран реагирует с большинством обычных тугоплавких материалов и металлов. Тонкоизмельчен-ный уран реагирует при комнатной температуре со всеми компонентами атмосферного воздуха, за исключением благородных газов. К счастью, в противоположность титану и цирконию, введение небольших количеств кислорода или азота не оказывает серьезного неблагоприятного действия на механические свойства металла. Поскольку металлический уран используется в ядерных реакторах, урановые топливные элементы должны быть свободны от самых незначительных загрязнений, поглощающих нейтроны, например бора, кадмия или редкоземельных элементов и в равной степени от ощутимых количеств многих других элементов. Требования чистоты в этом случае являются более строгими, чем для обычных стандартов, установленных для других металлов. Хилшки и металлурги разрешили эти весьма трудные проблемы за очень короткое время. [c.138]

    Кальций и магний почти не растворяются в уране. При восстановлении (жислов урана этими металлами получается металлический пороигок, т[)ебующи11, однако, дополнительной химической обработки для отделения окислов кальция и магния. Поэтому выгоднее восстанавливать галоидные соединешгя и особенно хлориды и фториды урана, так как получающиеся хлориды и фторнды восстановителей сравнительно легкоплавки и лучше отделяются от расплавленного металла. [c.353]

    Польский ученый (работавшая во Франции) Мария Кюри-Скло-довская (1867—1934), первая женщина-физик, назвала это явление радиоактивностью. Она установила, что радиоактивно не соединение урана в целом, а только атом урана. Причем уран сохраняет это свойство вне зависимости от того, в каком состоянии он находится — в металлической элементной форме или в виде соединения. В 1898 г. Кюри-Склодовская открыла, что тяжелый металл торий также радиоактивен. Эти исследования Мария Кюри-Склодовская проводила вместе с мужем — французским физиком Пьером Кюри <1859—1906). [c.153]

    Раствор соли уранила подкисляют серной кислотой и вносят металлический цинк. Постепенно раствор окрашивается в зеленый цвет. При взаимодействии раствора соли урана (IV) с гидроксидом щелочного металла выпадает коричневый U(0H)4(—lgnp=45). [c.627]

    Металлический иттрий, имеющий небольшое сечение захвата тепловых нейтронов и не вступающий во взаимодействие с расплавленным ураном, является конструкционным материалом для атомных реакторов. Возможно также использование иттрия в качестве носителя водорода для твердйх замедлителей [16]. Се, Ьа, могут служить разбавителями для окисных топливных материалов атомных реакторов. Молекулярные суспензии иттрия и урана дают устойчивую радиацию и сравнительно недороги [17]. Для защиты от радиации разработаны высокоэффективные материалы, в состав которых входят помимо свинца редкоземельные металлы, поглощающие нейтроны. Один из таких материалов содержит 35% Е)у и 40% РЬ. В состав других материалов входят Сё и РЬ в сочетании с Оу и Материалы используются для защитных устройств в лабораториях, установках и реакторах [18]. [c.88]

    В металлургии кальций широко применяют в качестве восстановителя при проиэБодстве уран з, тория и других металлов. С помошью кальция можно восстанавливать оксиды и фториды урана или тория. Сплав кальция с кремнием (силикокальций) находит применение в качестве раскислителя и дегазатора при производстве высококачественной стали. Известно применение сплавов кальция со свинцом в качестве баббитов. Кальций и его сплавы используются в химических источниках тока. Один из способов производства гидрида кальция заключается в нагревании металлического кальция в среде водорода. [c.500]

    Механизм гидрофторироваиия металлов изучен мало. При взаимодействии некоторых элементов с HF важное значение может иметь образование промежуточных гидридных фаз. Было показано, что смесь водорода и фтористого водорода позволяет превращать металлический уран в тетрафторид при более низких температурах, чем при реакции с чистым фтористым водородом [154]. [c.337]

    И0НИЗЭЩ1И В первую очередь отщепляются 5- и -электроны и происходит стабилизация /-электронов за счет оставшихся -электронов, образовавшиеся ионы в нормальных степенях окисления могут не содержать 6й-электроноа. С этой точки зрения наиболее показательны электронные структуры элементов в металлическом состоянии. Из значений металлических радиусов (см. рис. 3) следует, что ТЬ, Ра и и не имеют 5/-электронов. Первый 5/-электрон появляется только у нептуния. Диаграмма на рис. 4 [420] иллюстрирует области существования кристаллических структур и характер электронов металлов до америция включительно при различных теМ1пературах. Торий и протактиний характеризуются чистым -орбитальным поведением, а америций и последующие элементы — /-поведением. Уран, нептуний и плутоний в средней зоне имеют комбинированное ( /)-пове- [c.19]

    Уран образует только один металлоподобный гидрид состава иНз, известный в двух модификациях. Положение атомов металла в р-Ь Нз соответствует структуре (разд. 29.1.4,6), но не связано со структурой металлического урана. Расстояния и—и намного больше, чем в а- или -уране даже кратчайшее из ннх (и—2 и 3,32 А) указывает па наличие лишь очень слабого взаимоде1 1ствия металл — металл (ср. в -и и—8 и 2,97 А, а в а-и кратчайшее расстояние 2,76 А). Как было установлено нейтронографически, атомы водорода занимают очень большие пустоты, в которых они окружены (приблизительно тетраэдри-чески) четырьмя атомами и на расстоянии 2,32 А. Наличие у каждого атома и 12 соседних атомов Н и металлоподобный (а не солеобразный) характер соединения служат подтверждением того, что взаимодействие между атомами обусловлено некоторым видом делокализации ковалентных связей. В а-иНз атомы металла занимают позиции, соответствующие заштрихованным кружкам на рис. 29.4, а атомы Н находятся в позициях, соответствующих светлым кружкам. Здесь связи и—и также чрезвычайно слабые (1)—8 и 3,59 А) атомы Н, как и в иНз, имеют тетраэдрическое окружение из четырех атомов J (Н—411 2,32 А). Тригидриды Чр, Ри и Ат изоструктурны гексагональным тригидридам 4/-элементов. [c.15]

    Атомно-абсорбционный метод использован для определения магния в чугуне [286, 519, 538], в стали [1202], в алюминиевых ]895] и цинковых [244, 271] сплавах, в металлическом уране [393, 804], в высокочистых металлах — Си, Zn, d, In, Pb, Ni, Pd [272], в железной руде [480], в шлаках [519, 894], сварочных флюсах [284], цементе, известняке и магнезите [894], в силикатных материалах [271, 749, 775, 889, 897, 1093, 1095, 1237], стекле [342], угле [983, 1000, 1198], в почве [281а, 592, 648, 894, 909, 983, 1000, [c.192]

    Пятьдесят лет уран Клапрота числился металлом. Только в 1841 г. француз Эшен Пелиго доказал, что, несмотря на характерный металлический блеск, уран Клапрота г1в элемент, а окисел иОг. Пелиго удалось получить настоящий уран — тяжелый металл серо-стального цвета. [c.351]


Смотреть страницы где упоминается термин Металл. Уран металлический: [c.1499]    [c.350]    [c.267]    [c.238]    [c.182]    [c.426]    [c.361]    [c.326]    [c.78]    [c.168]    [c.1284]    [c.1326]    [c.1500]    [c.15]   
Технология производства урана (1961) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Уран металлический разрушение структуры литого металла или осаживание

Уран металлический растворимость в металлах



© 2024 chem21.info Реклама на сайте