Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этан, стабильность

    Атом хлора, таким образом, разрывает в этане стабильную связь С — Н, поскольку при этом образуется еще более стабильная связь Н — С1. Так как при хлорировании этана вторая реакция передачи цепи [см. (11, в)] экзотермична, весь процесс протекает как цепная реакция, если она была инициирована атомом хлора, который образуется из молекулы хлора при относительно небольшой затрате энергии (см. стр. 135). [c.139]


    Сходство химического состава сырых нефтей может привести к гипотезе, что углеводороды сырой нефти, достигшие равновесия в определенных условиях температуры и давления их образования, более или менее одинаковы для всех сырых нефтей. Вообще говоря, эта гипотеза несовместима с термодинамическими свойствами углеводородов. Известно, что все углеводороды сырых нефтей термически нестабильны и могут быть превращены в такие стабильные системы, как, например, метан или этан и углерод. Такие реакции, однако, характеризуются высокими значениями энергии активации и поэтому невозможны при тех низкотемпературных условиях, которые соответствуют образованию и залеганию сырой нефти. Реакции изомеризации протекают значительно легче, в частности в присутствии некоторых гетерогенных катализаторов, таких, как алюмосиликатные системы, обычно имеющиеся в нефтяных пластах. Следовательно, равновесие между изомерами таких углеводородов более вероятно, чем равновесие, рассмотренное выше. [c.23]

    Вспрыскивание или испарение какого-либо углеводорода в зону действия пламени подвергает вещество, находящееся в виде отдельных молекул в парах, действию температуры, при которой углеводороды уже не стабильны и разлагаются на элементы. Такое разложение происходит не прямо а проходит ряд ступеней. По аналогии с известными процессами крекинга нефтей до газа, при котором температуры все-таки ниже, чем в пламени (700° С вместо 1200—1500° С) можно заключить, что большие молекулы разбиваются на более мелкие молекулы газов. Образуются метан, этан и этилен, пропан и пропилен, немного дивинила и, возможно, — водорода. [c.473]

    На рис. 17 показана вначале молекула типа тех, которые, вероятно, существуют в жирных углях. В зависимости от условий молекула может подвергнуться крекингу, давая при температуре около 400° С воду и две молекулы вещества, похожего на первичную смолу, или, напротив, высвободить водород и этан с получением большой ароматической молекулы, термически более стабильной, переход которой в паровую фазу маловероятен и которая имеет все возможности в конце сконденсироваться при выделении воды [c.81]

    Извлеченные при абсорбции углеводороды отпаривают в де-сорбере из насыщенного масла и направляют на газофракционирующую установку, где получают стабильный бензин, этан, пропан, бутан и изо-бутан, которые являются товарной продукцией завода. [c.9]

    Бензин, получаемый при крекинге, содержит в себе растворенные газы — этан, этилен, пропан и другие, а также легколетучие жидкие углеводороды. Если хранить такой бензин в резервуаре, то-все эти компоненты будут довольно быстро теряться. Для того чтобы полученный бензин сделать стабильным, его подвергают специальной обработке, причем газообразные и легколетучие компоненты используются. Схема такой стабилизационной установки приведена на рис. 118. Полученный при крекинге нестабильный бензин поступает в газосепаратор 7. Выделившиеся здесь газы направляются в газовую сеть, а жидкий бензин поступает в стабилизатор 4, представляющий собой ректификационную колонну с небольшим числом [c.281]


    В сложной схеме механизма каталитического крекинга (рис. 15) следует отметить углеводороды, входящие в состав бензина (С5— 195 °С), а также бутены являются нестабильными первичными продуктами пропилен и н-бутан являются стабильными продуктами изобутан, пропан, этилен, этан, метан и кокс представляют собой стабильные продукты вторичных реакций, которые образуются из нестабильных первичных продуктов [23]. Д. И. Орочко с сотр. предложили следующую схему параллельно-последовательного протекания реакций при каталитическом крекинге [24]  [c.45]

    Последовательность процесса стабилизации. Общепринято считать, что стабильность углеводородов снижается с уменьшением относительной молекулярной массы. Метан, например, является наименее химически активным соединением во всем классе парафинов. По уменьшению термической стабильности (увеличению реакционной способности) углеводороды располагаются в следующем порядке метан, этан, пропан, изобутан, нормальный бутан, неопентан, нормальный пентан, изопентан, нормальный гексан, 2-метилпентан. [c.37]

    При 727°С порядок термической стабильности следующий метан, этилен, этан, пропилен, пропан, бутены, нормальный бутан, [c.37]

    При 427°С порядок термической стабильности меняется метан, этилен, этан, пропан, пропилен, нормальный бутан, бутены. Пропан и бутан стали более устойчивыми, чем пропилен и бутены. На практике обнаруживается, что пропилен быстрее разлагается до углерода при нагреве до температуры крекинга. По этой же причине бутан труднее гидрогенизировать до бутенов, чем пропан до пропилена. Реакции крекинга (разрыв цепей) идут при более высоких температурах, а дегидрогенизации — при низком давлении и коротком времени пребывания в зоне реакции. [c.38]

    Порядок устойчивости к окислению в газовой фазе согласуется с порядком стабильности метан, этан, изобутан, нормальный бутан, нормальный пентан, изопентан. [c.39]

    Схема с восходящим режимом давления предусматривает в первой колонне разделение сырьевого потока на этан-бутановую фракцию (сверху) и стабильный газовый бензин (снизу). Верхний продукт первой колонны по- [c.93]

    Гидраты представляют собой кристаллические соединения — включения (клатраты), которые могут существовать в стабильном состоянии, не являясь химическими соединениями. По существу гидраты — это твердые растворы, где растворителем являются молекулы воды, образующие с помощью водородных связей объемный каркас гидратов. В полостях этого каркаса находятся молекулы газов, способных образовывать гидраты (метан, этан, пропан, изобутан, азот, сероводород, диоксид углерода, аргон). Углеводороды, молекулы которых больше молекулы изобутана, не могут проникать внутрь каркаса, а поэтому не образуют гидратов. Нормальный бутан не образует гидратов, но его молекулы способны проникать через решетку гидратного каркаса вместе с молекулами газов меньших размеров, что приводит к изменению равновесного давления над гидратом. [c.115]

    На рис. 118 показана принципиальная технологическая схема стабилизационной установки, позволяющей получать -стабильный газовый бензин, технический этан, пропан, изо-бутан и н-бутан. [c.236]

    Другой важный вид использования попутного нефтяного газа — его отбензинивание, т. е. извлечение из него газового бензина на газоперерабатывающих заводах или установках. Газ с помощью мощных компрессоров сильно сжимается и охлаждается, при этом пары жидких углеводородов конденсируются, частично растворяя газообразные углеводороды (этан, пропан, бутан, изобутан). Образуется летучая жидкость—нестабильный газовый бензин, который легко отделяется от остальной неконденсирующейся массы газа в сепараторе. После фракционирования — отделения этана, пропана, части бутанов — получают стабильный газовый бензин, который используют как добавку к товарным бензинам, повышающей их испаряемость. [c.152]

    Г. н. п. после отделения их от нефти поступают на газоперерабатывающие заводы (ГПЗ). Газ I ступени сепарации транспортируется под собственным давлением, а с удаленных на значит, расстояние (80-22 км) месторождений и с концевых ступеней сепарации-с помощью компрессоров. На ГПЗ после осушки, отделения газового конденсата, очистки от HjS и СО2 газы перерабатывают на следующие основные фракции смесь метана и этана (отбензиненный газ) этан смесь углеводородов Сз и выше (нестабильный газовый бензин) смесь пропана с бутанами (сжиженный газ) смесь углеводородов С,+ (стабильный газовый бензин), [c.477]

    ПО данным измерений методом микроволновой спектроскопии, составляет около 12 кДж/моль (3,0 ккал/моль). Причина заторможенности этого вращения до сих пор полностью не ясна. Однако известно, что замена одного или большего числа протонов группами большего объема повышает высоту барьера, и на этом основании можно прийти к выводу, что пространственные взаимодействия играют доминирующую роль в затруднении вращения в замещенных этапах. Большое значение для решения этой проблемы имеют дополнительные экспериментальные данные, которые могут быть получены с использованием спектроскопии ЯМР. Так, сведения о стабильных конформациях замещенных этанов были получены на основании определения вицинальных констант и их зависимостей от двугранного угла (разд. 2.2.1 гл. IV). В дополнение к этому для ряда молекул были измерены барьеры вращения путем анализа температурной зависимости спектров. Для этих исследований использовалась почти исключительно спектроскопия ЯМР Р, и мы вернемся к этой теме в гл. X. [c.269]


    Концентрат тиолов, выделенный из стабильного конденсата, содержал 80% этан- и пропантиолов. В указанном выше режиме из раствора выделяется до 50— [c.131]

    Алкены характеризуются ввиду наличия двойной связи высокой реакционной способностью в реакциях присоединения, но повышенной, по сравнению с алканами, термостойкостью в отношении реакций распада. Этилен из алкенов наиболее устойчивый. Он всегда содержится в продуктах термолиза нефтяного сырья как первичный и вторичный продукт их превращений. По термической стабильности он занимает промежуточное положение между метаном и этаном. Термический распад этилена заметно начинается при температуре 660 °С. При 400 - 600°С в основном протекает его полимеризация  [c.359]

    Атом хлора, таким образом, разрывает в этане стабильную с[ш ,ь С—Н, так ак при этом образуется еще более стабильная связь Н—С1. Поскольку при хлорировании этана вторая реакция перс дачи цепи [уравненне (Г.1.11в)] экзотермнчна, весь процесс протекает как цепная реакция, еслн она была инициирована атомом хлора, который образуется из молекулы хлора при относительпо небольшой затрате энергий. [c.218]

    В большей части нефтей, поступающих на установки первичной переработки, содержатся низкокипящие углеводородные компоненты этан (СаНб), пропан (СзНв), бутан (СШю). Поэтому в процессе хранения бензина в обычных емкостях под атмосферным давлением будут значительные потери от испарения. Испаряясь иа нефти, газовые компоненты узлекают с собой низкокипящие компоненты из фракции бензина. При этом качество бензина несколько ухудшается. Для выделения из легких бензиновых фракций газовых компонентов и придания товарным бензинам стабильности, обеспечивающей длительное хранение их при обычных условиях без потерь, бензиновые фракции стабилизируют. Для улавливания из газов низкокипящих компонентов требуется сооружение блока абсорбции. [c.149]

    Смесь газов и паров, выходящая с верха колонны 2, охлаждается в холодильнике-конденсаторе 8. Газы вместе с образовавшимся конденсатом поступают в газоводоотделитель 9. Несконденсированные газы — сухой газ (в основном метан и этан) с верха газоводоотделителя выводятся с установки. На газоотводном трубопроводе ставится редукционный клапан 10, поддерживающий стабильное давление в аппарате 9 и колонне 2. [c.7]

    Сырые нефти представляют собой жидкости, цвет которых варьирует от янтарно-желтого до коричневато-зеленого и иногда даже черного удельный вес их приблизительно от 0,800 до 0,985 кипят они в пределах от комнатной температуры до температуры выше 350°. Нефти из глубоких горизонтов с большим количеством углеводородных газов, так называемые дистиллятные или конденсатные нефти, могут иметь значительно меньший удельный вес, порядка 0,760, и быть практически бесцветными. Они могут не содержать фракций, кипящих выше 250 или 300°. Если перегонять нефть, то при температуре около 350° начинается частичное термическое разложение. Молекулярный вес обычных сырых нефтей может быть более 1000, что соответствует температуре кипения выше 500°. В среднем нефти могут содержать от 9 до 30 или 40 % бензиновых фракций, выкипающих до 200°. Остальные фракции распределяются по довольно плавной кривой выкипания, показывающей соотношения, в которых присутствуют керосиновые и газойлевые фракции, легкие и тяжелые масляные фракции и так называемые остаточные продукты. Термин масляные фракции указывает лишь молекулярный вес фракции, так как применимость ее для смазочных целей зависит от небольших различий в составе. После извлечения из пласта нефти обычно насыщены (при давлении и температуре, соответствующим условиям хранения) легкими углеводородами (метаном, этаном и др.) и часто содержат сероводород и эмульгированную пластовую воду. Ввиду того, что нефти добываются из нормально восстанови гельной среды, на воздухе они обычно окисляются. С этой точки зрения фракции, выделяемые обычной перегонкой, являются менее стабильными, чем сами сырые нефти. [c.50]

    По второму варианту стабилизации (рис. 80) нестабильный газовый бензин нагревается в теплообменнике и поступает в среднюю часть этановой колонны, работающей под давлением около 40 ат. Сверху этой колонны отбирают сухой газ (метан и этан). Остаток снизу ее отводится в пропановую колонну. Давление в ней поддерживают 15 ат. Сверху пронановой колонны уходит нропан с примесью метана и этана и через конденсатор-холодильник частично возвращается в колонну в качестве орошения, а остальное количество его поступает в емкость на хранение. Сверху емкости орошения отводятся несконденсировавшиеся метан и этан. Остаток из пропано-вой колонны направляется в бутановую колонну (давление 4—6 ат), сверху которой получают бутаны. Бутановая фракция в следующей изобутановой колонне разделяется на изобутан и к-бутан. НижНим продуктом бутановой колонны является стабильный газовый бензин. [c.171]

    Этилен наиболее устойчив из олефинов. Он постоянно встречается в продуктах пиролиза других углеводородов как первичный и как вторичный продукт их превращений. По термической стабильности он занимает проме/куточное место между метаном и этаном заметно разрушаться он начинает только при температурах около 660 С. При 400—700 С этилен заметно нолимери-зуется в бутилены  [c.414]

    Прп воздействии высоко температуры на газообразные парафиновые углеводороды их объем увеличивается в результате образования новых ве-1цеств. В первую очередь протекают реакции крекинга и получаются олефины и парафины с числом углеродных атомов, меньшим, чем в исходных углеводородах. Исключение представляют метан и этан. Этан, как уже было сказано, претерпевает преимущественно дегидрирование с образованием этилена и водорода. Метап, наиболее нрочпый газообразный углеводород, нрн пиролизе в производственных условиях оказывается стабильным до. 500. ( днако при длительном воздействии теила (в проиыпгленпых процессах этого никогда не бывает) он расщепляется уже при низкой температуре (табл. 68 [421). [c.75]

    При пиролизе этана образуются этилен и водород, из которых первый при соблюдении известных условий, особенно при малой продолжительности пребывания в зоне пиролиза, очень стоек. Прп пиролизе бутана образуются метан, этан, этилеп, пропен, бутеп и водород, причем пропеп менее стабилетг чем этилен. Поэтому в таком случае вторичные реакции проявляются к большей мере. Иа основании данных, приведенных в табл. 69—78, молаю судить о стабильности этана, нропана и бутанов [10]. [c.79]

    Углеводороды попутных нефтяных газов служат для получения топливоного сухого газа (главным образом, метан и этан), сырья для получения этилена (этановая фракция), сжиженных газов (пропан, изобутан и п-бутан), стабильного газового бензина (более тяжелые углеводороды). Состав попутных нефтяных газов являе1ся характерным для каждого месторождения. [c.45]

    Такая схема вполне подтверждается опытными данными, так как в этом случае аналитически были обнаружены третичный бутиловый спирт, ацетон, метан и в незначительных количествах этан и (СвН9)2-Из предложенного механизма распада диалкилперекисей следует, что относительная стабильность алкоксильных радикалов определяется отношением  [c.106]

    На рис. 10.13 показана схема перекрывания орбиталей, ведущего к образованию связей в молекулах насыщенных углеводородов. Перекрывание 5/7 -гибридных АО по связям С—С ведет к формированию ЛМО ст-типа, т. е. симметричных относительно связевой оси. Таким образом, вращения вокруг этой оси ограничены лишь за счет дальних взаимодействий электронов на орбиталях связей С—И. Действительно, энергетические барьеры вращения по ординарным связям малы. В этане, где барьер определен наиболее точно (11,9 кДж/моль) и соответствует разности энергий стабильной антиперипланарной I и наименее устойчивой синперипланарной II конформации, [c.391]

    В схеме газофракционирующей установки с восходящим давлением нестабильный бензин поступает в первую колонну, работающую под давлением около 16—18 кГ/см . С низа колонны отводится стабильный бензин, а с верха — смесь этана, пропана и бутанов. Часть верхнего продукта первой колонны используется как орошение, а остальное количество подается насосом во вторую колонну, где смесь разделяется на бутан, отводимый снизу, и пропан-этановую фракцию, уходящую сверху. Продукт верха этой колонны подается в третью колонну, в коЛрой под давлением 40 кПсм разделяется на пропан и этан, который содержит примесь пропана. [c.186]

    Термическая стабильность низших, газообразных парафинов очень велика. Так, метан ниже 700—800 °С практически не разлагается. Значительная стабильность метана объясняется тем, что в его мрлекуле отсутствуют связи С—С, энергия диссоциации которых меньше, чем для связей С—Н. При умеренной глубине разложения метана основными продуктами его крекинга являются этан и водород. [c.50]

Рис. 1. Потеициальиая ф-ция и уровин энергии заторможенного внутр. вращення для молекул, подобных этану. I-стабильные заторможенные (шахматные) конформации, II - заслоненные нестабильные конформации. Рис. 1. Потеициальиая ф-ция и уровин энергии заторможенного <a href="/info/328424">внутр</a>. <a href="/info/50343">вращення</a> для молекул, подобных этану. I-стабильные заторможенные (шахматные) конформации, II - заслоненные нестабильные конформации.
    При внутр. вращении вокруг простой саязи С—С в этане возникают три минимума, отвечающие стабильным шахматным конформациям, и три максимума, отвечающие заслоненным конформациям, что соответствует барьеру третьего порядка (трехкратному). Зависимость потенц. энергии V от угла относит, поворота ф выражается ур-нием  [c.458]


Смотреть страницы где упоминается термин Этан, стабильность: [c.25]    [c.600]    [c.601]    [c.148]    [c.79]    [c.260]    [c.49]    [c.145]    [c.31]    [c.370]    [c.1257]    [c.302]    [c.57]   
Биохимия Том 3 (1980) -- [ c.92 ]




ПОИСК







© 2024 chem21.info Реклама на сайте