Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

спектры обмен

    Процесс взаимопревращения (83в) зрь (83г) происходит путем переноса хелатного протона, поэтому обмен должен быть очень быстрым. Действительно, хотя индивидуальные таутомеры (83в) и (83г) обычно различимы в ИК- и УФ-спектрах, обмен происходит так быстро, что в спектре ПМР такой смеси таутомеров имеются сигналы только одной частицы, соответствующей усредненной структуре (83в) и (83г) [43, 79]. В этом отношении предсказаний, основанные на теоретических расчетах относительных энергий взаимосвязанных таутомерных форм (83в) и (83г) [90, 93] и энергий, связанных с их взаимопревращением [93], удивительно хорошо согласуются с экспериментальными результатами и сле- [c.582]


    Изменение спектра обменного катиона Сц2+ в цеолите СиУ, содержащем четыре катиона на полость, представлено на рис. 128 [18]. Спектр ЭПР отражает в данном случае изменения в расположении ( -уровней катиона Си + (рис. [c.319]

    Отсутствуют сколько-нибудь заметные изменения в спектрах поглощения ароматических соединений 2. Быстрое образование и разложение при —80° 3. Отсутствует заметная электропроводность 4. Нет заметного обмена с хлористым дейтерием при 25 1. Интенсивное окрашивание в видимой области 2. Медленное образование и разложение при — 80° 3. Высокая электропроводность 4. Быстрый обмен с хлористым дейтерием при 25° [c.400]

    Ширина линий в спектре может по ряду причин различаться. Мы упоминали ранее, что спиновая плотность на протонах группы СН эти-ламина зависит от конформации. Временная зависимость этого типа процесса может повлиять на ширину линий различных протонов в молекуле различным образом. Быстрый обмен между различными конфигурациями ионной пары с анион- или катион-радикалом также может привести к большему уширению одних линий но сравнению с другими [256, 26]. [c.49]

    О а Е к оказывают на спектр ЭПР, показано на рис. 13.22. При J = = 260 см в Си2(ОАс)4 в спектре ЭПР не наблюдаются переходы между состояниями с 5 = 0 и 5=1. Обменное взаимодействие приводит к низкоэнергетическому состоянию 5 = 0, поэтому с падением температуры снижается интенсивность сигналов. Эта температурная зависимость приводит к значению J, равному — 260 см " что соответствует разделению состояний с 5 = 0 и 5=1 величиной 27, или — 520 см". В рассмотренном ранее спектре порошкообразного образца расщепление полос д и обусловлено двумя переходами с АМ = 1, усредненными по ориентациям. В относительно редкой ситуации, когда параметр обмена J меньше, чем доступная энергия микроволнового [c.248]

    Другое важное применение масс-спектрометрии, основанное на использовании изотопов, состоит в исследовании обменных реакций с участием соединений, содержащих нерадиоактивные изотопы. Для определения скорости обмена изучают во времени содержание изотопа в продукте превращения меченого исходного вещества. Продукт или исходное соединение можно разложить до газообразного вещества, содержащего метку, и из масс-спектра получить изотопное отношение. Эти вещества можно также исследовать непосредственно, и из анализа изменений в спектре различных фрагментов можно установить местонахождение и количество метки. Определяя, какие пики в спектре изменяются при внедрении изотопа, можно выявить части молекулы, участвующие в обмене. С помощью метки и масс-спектрального анализа было показано, что эфирный кислород в продукте реакции метанола с бензойной кислотой принадлежит метанолу  [c.324]


    Обменное расщепление или другая тонкая структура (см. ниже) в спектре РФС должна быть проанализирована самым тщательным образом. К соединениям со смешанной валентностью относится также [(NHз)5Ru (пиразин) Ки(Ь"Нз)5] , описанный в гл. 10. Это соединение было также исследовано методом РФС [59]. Как сообщалось, в спектре РФС наблюдаются два ионизационных пика, обусловленные двумя неэквивалентными ионами переходного металла. Следует отметить, что пики Ь-углерода находятся в том же спектральном диапазоне, что и ионизационные пики металла, и вывод сделан исходя из результата вычитания пиков углерода из спектра. Метод РФС характеризуется шкалой [c.352]

    Наряду с обменом колебательной, вращательной в поступательной эпергии при столкновениях молекул, находящихся в основном электронном состоянии, значительный интерес представляет обмен энергии электронновозбужденных молекул. Практически единственным экспериментальным методом определения вероятности или констант скорости этих процессов является оптический метод, основанный на измерениях интенсивности электронных спектров испускания (флуоресценции). [c.100]

    Сопоставление спектров ЯМР на ядрах Н и Н исходных и выделенных углеводородов проводилось по характеру мультиплетности сигналов отдельных фрагментов с учетом изотопных сдвигов для отдельных изомеров, по измерению соотношения интегральных интенсивностей сигналов. Это сопоставление в сочетании с результатами определения общего содержания дейтерия позволяет сделать вывод о том, что в межмолекулярном обмене участвуют лишь атомы водорода, находящиеся у -углеродных атомов алкильных групп алкилбензолов. На рис. 5.3 приведены спектры ПМР этилбензола, выделенных в одном из опытов (табл. 5.12), сигналы протонов групп СНз соединений, запи- [c.195]

    Для медленного обмена тД о 1 и спектр состоит нз двух отдельных пиков. Если ширина линии на половине высоты инка ири обмене больше ширины той же линии в отсутствие обмена на Ь к [c.270]

    Зонная структура энергетического спектра, как мы видели выше, отражает ту особенность природы атомных кристаллов (металлов, полупроводников и изоляторов), что в них существует непрерывный трехмерный каркас межатомных связей и свойственное кристаллическому веществу периодическое поле. Электронный энергетический спектр молекулярных кристаллов, построенных из отдельных нульмерных молекул, соединенных ван-дер-ваальсовскими связями, не имеет обычной зонной структуры, а представляет собой совокупность до некоторой степени искаженных в результате слабого обменного взаимодействия молекул молекулярных энергетических спектров, состоящих из дискретных энергетических уровней. Кристаллы цепочечной, сетчатой и каркасной структуры, в том числе разнообразные соединения включения, мы рассматриваем как разновидности молекулярных кристаллов, построенных, соответственно, из одно-, двух- и трехмерных молекул или из их комбинаций. Их энергетические спект- [c.118]

    Ядерный магнитный резонанс (ЯМР) и электронный парамагнитный резонанс (ЭПР) — два метода радиоспектроскопии, позволяющие изучать структуру и динамику молекул, радикалов, ионов в конденсированных и газовой фазах вещества. Спектры ЯМР обладают высокой специфичностью и широко применяются для идентификации соединений, в структурно-аналитических целях, а также для изучения быстрых обменных процессов. Спектроскопия ЭПР — метод исследования парамагнитных частиц и центров, кинетики и механизмов процессов, происходящих с их участием. Особенно большой прогресс в развитии методов спектроскопии ЯМР и ЭПР, достигнутый в последние годы, связан с появлением импульсных фурье-спектрометров, двухмерной спектроскопии и техники множественного ядерного, электрон-ядерного и электрон-электрон-ного резонанса. [c.5]

    В спектроскопии ЯМР эксперимент обычно проводится при температурах в диапазоне 120...470 К, но не всегда удается исследовать спектры в достаточно широком интервале температур даже этого диапазона, что ограничивает круг изучаемых процессов. Так, даже при нагревании до 200°С (верхний температурный предел, обусловленный конструкционными характеристиками спектрометров) для систем с энергией активации обменного перехода 80... 100 кДж/моль будет наблюдаться лишь начало медленного обмена. [c.43]

    Рассмотрим некоторые примеры. Упоминавшаяся ранее инверсия циклогексанового кольца в конформациях кресла приводит к обмену аксиальных и экваториальных протонов местами. При комнатной температуре в спектре ПМР наблюдается только один сигнал и лишь йри понижении температуры (до —70 °С) видны [c.43]

    Скорость обменной реакции типа Н-- -НН ц НН + Н-Х, .-]-Х ХГ + Х - может быть измерена по уширению линии спектра ЭПР. [c.299]


    При взаимодействии с адсорбированными молекулами обменные катионы выступают, прежде всего, как центры ион-ди-польного взаимодействия. Кроме того, по данным ИК-спектров, обменные катионы могут проявлять свойства акцепторных центров [9]. Наконец, катионы переходных металлов могут образо-вывзть с олефинзми устойчивые л-комплексы [10]. [c.42]

    МНОГО различных схем установок ЯМР, но все они имеют эти три основные части. Поскольку резона11с наступает при энергиях, соответствующих радиочастотам электромагнитного спектра, обмен энер1 ий между спектрометром и образцом достигается помещением образца внутрь проволочной катушки, являющейся частью настраиваемой цепи (иногда передатчик и приемник имеют одну катушку, иногда — отдельные). Обычно и передатчик, и приемник непрерывно работают на определенной частоте, а поляризующее поле. медленно меняется, проходя условие резонанса, определяемое уравнением (УП1-2). [c.267]

    Указанное предположение подтверждено изучением ИК-спект-ров поглощения исходных компонентов и продуктов их взаимодействия [143]. На этом этапе взаимодействия координированных компонентов происходит фиксируемый ИК-спектрами обмен карб-оксилатных групп на хлор у никеля. При добавлении избыточного количества этилалюминийсесквихлорида к первичным продуктам протекает более глубокое взаимодействие, сопровождающееся уменьшением количества твердых веществ и появлением в них металлического никеля, а также выделением газа, содержащего водород. Это указывает на алкилирование переходного металла с последующим распадом нестабильных алкилпроизводных. [c.76]

    Выводы термодинамического анализа подтверждаются данными ЯМР. Например, коэффициент самодиффузии адсорбированной воды в двухслойном гидрате Ма-вермикулита (0 я=10 м / ) [86] почти на порядок ниже, чем в жидкой воде см /с). Тем не менее время жизни протонов (т) в гидратационной оболочке обменных катионов короче, чем в жидкой воде. Это указывает на более высокую степень диссоциации (более выраженную кислотность) молекул воды, адсорбированной слоистыми силикатами, по сравнению с объемной водой. К сожалению, из-за неточностей в интерпретации спектров ЯМР первые оценки кислотных характеристик межслоевой воды монтмориллонита в работах [99, 100] оказались сильно завышенными. По данным [99], степень диссоциации воды в однослойном гидрате На- и двухслойном Са-монтморил-лонита в 10 раз выше, чем в жидкой воде. Согласно [100], в однослойном гидрате На-фтормонтмориллонита около 60% межслоевой воды существует в виде ионов НаО+ и ОН . [c.38]

    Из проведенного выше обсуждения очевидно, что УФС-спектры относительно больших молекул содержат довольно много информации о потенциалах ионизации, энергиях колебаний ионизованной молекулы, спин-орбитальных взаимодействиях, ян-теллеровских расщеплениях и электронных обменных взаимодействиях. К сожалению, полосы часто перекрываются и появляются широкие линии с неразрешенной колебательной структурой. Примером небольшой молекулы, в спектре которой наблюдается большое число линий, служит газообразная NO. На рис. 16.13 показаны спектры этой молекулы, полученные Асбринком и сотр. [32] при разрешении ЮмэВ и источнике Не(1) и при разрешении 25 мэВ и источнике Не (II). С процедурой отнесения линий читатель может познакомиться в цитированной работе, однако даже внимательное рассмотрение рис. 16.13 показывает, что в спектре разрешены как обменное, так и спин-орбитальное расщепления. [c.346]

    Из проведенного ранее обсуждения химических сдвигов ионизационных пиков РФС электронов оболочки можно сделать вывод, что для электронов оболочки всегда наблюдаются простые спектры, например, для каждого заметно различающегося окружения атома азота наблюдается один пик для Ь-электронов азота. К счастью, зто не всегда так [27]. Мы уже видели, что парамагнитные частицы, такие, как О2, вызывают обменные расщепления линий электронов оболочки. Такие же расщепления, обусловленные обменными процессами, обнаружены и в спектрах РФС парамагнитных комплексов ионов переходных металлов. Кларк и Адамс [60] сообщили о Зх-обменном расщеплении хрома величиной около 4,5 эВ в Сг(ЬГа)з и 3,1 эВ в Сг(Ь -С5Н5)2. Может возникнуть вопрос, должен ли анализ такого расщепления способствовать пониманию деталей контактных сдвигов Ферми в ЯМР, наблюдаемых для парамагнитных частиц. [c.353]

    Каталитическую активность цеолитов oбъя няюf как результат увеличения бренстедовской кислотности групп ОН за счет частичного перераспределения электронной плотности, в частности, при введении многозарядных обменных катионов [142]. На основании анализа спектров сверхтонкой структуры ЭПР, полученных при адсорбции олефинов на образцах активированных РЗЭ-У цеолита, высказано предположение об образовании алкил-радикалов, связанных с поверхностью цеолита таким образом, что спиновая плотность на формально трехзарядном атоме углерода меньще единицы. [c.69]

    Использование в качестве носителя кристаллических алюмосиликатов (цеолитов) типа У позволяет резко увеличить силу поверхностных кислотных центров, которая возрастает при деалюми-нирова-нии -и обмене структурных катионов Na+ на поливалентные катионы. Как показано Г. Д. Чукиным и др. [146], с металлом способны взаимодействовать лишь наиболее сильные протонные центры цеолитов, характеризующиеся частотой колебаний связи О—,Н в ИК-спектрах менее 3640 см , что соответствует энергии активации десорбции азотистых оснований >84 кДж/моль. При этом образуется комплекс с переносом заряда. По-видимому, указанная закономерность справедлива для любых носителей, содержащих поверхностные группы О—Н. [c.230]

    Исследование ИК-спектров поглощения обменных форм цеолитов типа X и У, а также адсорбированных на них молекул различной природы подтверждает наличие протонных кислотных центров Бренстеда и апротонных кислотных центров типа кислот Льиса. [c.31]

    Образование триплетных эксиплексов было обнаружено в полярном растворителе — ацетонитриле между радикалами акридина, азафенантреиа и катион-радикалами доноров электрона (дифенила, нафталина, нафтола). Такие эксиплексы образуются в результате реакции переноса электрона с донора на возбужденные катионы гетероароматических соединений. Спектры поглощения наблюдаемых триплетных эксиплексов являются суммой спектров свободных радикалов акцептора и катион-радикалов донора (рис. 65). Прочность данных триплетных эксиплексов в основном определяется не кулоновским, а обменным взаимодействием, поскольку они наблюдаются в полярной среде. [c.178]

    Проявление обменного в.заимодействия в спектрах ЭПР. Если парамагнитные частицы находятся в очень близком соседстве, так что электронные облака неснарепных электронов перекрываются, может происходить обмен электронами между отдельными частицами. В жидкой фазе обмен электронами происходит во время столкновений пара магнитных центров. Если частота обмена невелика, обменное взаимодействие приводит к уишрепию спектра, так как парамагнитные центры находятся в различных быстро изменяющихся локальных нолях. Если частота обмена высока, разброс в величинах локальных магнитных полей для разных частиц перестает проявляться. Электрон оказывается в некотором усредненном магнитном поле. Благодаря этому ширина линии уменьшается, происходит так называемое обменное сужение спектра. Б условиях быстрого обмена в спектре перестает проявляться н разброс локальных нолей, связанный с различной ориентацией спинов собственных ядер парамагнитных центров. Это приводит к исчезновению сверхтонкой структуры. Так как при обмене осуществляется сильное спнн-сниновое взаимодействие, ири этом резко уменьшается время релаксации. [c.236]

    Комплексообразование с Си сопровождается цветовыми переходами до фиолетового, синего и черного цветов, при этом батохром-ный сдвиг в видимой области электронных спектров отражения и пропускания достигает 100-200 нм. Статическая обменная емкость (СОЕ) по Си " , определенная по трем параметрам количество Си , сорбированной из раствора (иономер ЭКОТЕСТ-2000 с Си " —селективным электродом), количество вытесненных протонов по снижению pH этого раствора с 5,2-5,6 до 2,6-3,6 и количество меди, сорбированной на целлюлозе равна для волокон 1ц-ХПц 0,3-0,4 мМ/г, бумаг 16-ХПб — 0,05-0,1 мМ/г, причем в бумагах реагентный цветной слой расположен только на поверхности, что определено на срезах. СОЕ коррелирует с количеством азота (N5, Ng и N7) в функциональных группировках в исходных формазанцеллюлозах и в их медных комплексах. [c.21]

    Влияние природы растворителя на спектр ЭПР может быть объяснено механизмом [136], учитывающим возникновение слабых обменных взаимодействий при столкновении молекул в растворе. При сближении двух парамагнитных частиц обменное взаимодействие между ними может вызвать нарушение фазы ларморовых вращений спинов вокруг внешнего магнитного поля. В работах [ 137 -139] показано, что в полярных растворителях ширина сверхтонких компонент меньше, а константа сверхтонкого расщепления больше, по сравнению со значениями констант в неполярных растворителях. Этот эффект приписан возникновению комплексов радикал — растворитель. Образование комплексов свободный радикал — растворитель может быть обусловлено различными причинами, в частности водородной связью [ 138]. В ряде случаев возможно также образование молекулярных комплексов с растворителем, акцепторами, ионами металлов. Последние нередко приводят к стабилизации ион-радикалов [140, 141]. Авторы [141] считают, что молекулы растворителя локализуются на полярных заместителях или гетероатомах. [c.120]

    Турнбулева синь образуется при добавлении избытка соли железа(П) к раствору Кз[Ре(СЫ)б]. Сходство мёссбауэровских спектров турнбулевой сини и берлинской лазури подтверждает ранее высказанные предположения о том, что при осаждении первой происходит взаимный обмен состояний окисления  [c.639]

    Если время релаксации велико, то заселенность верхнего уровня будет возрастать, а интенсивность сигнала ЭПР падать из-за насыщения. При малом времени релаксации линия будет широкой из-за принципа неопределенности. Уширяют сигнал и нерелаксационные процессы, в частности тонкое и сверхтонкое спин-спиновое взаимодействие (см. выше), обменные процессы и др. Что касается обменных процессов, то принципы эффекта являются общими для спектроскопии ЭПР и ЯМР и обсуждались в гл. I, однако при рассмотрении спектров ЭПР должен учитываться не только обмен ядер, но и обмен электронов. [c.66]

    В комплексе железа со смешанной валентностью, т. е. атомами Ре(И) и Ре(111), в спектре будут наблюдаться два сигнала, только если любой переход электрона между этими атомами будет происходить достаточно медленно. Например, в комплексном соединении [Ре Ре2 0(СНзС00)б(Н20)з] при температуре 290 К в мессбауэровском спектре наблюдается один усредненный синглетный сигнал (рис. У.9), указывающий на протекание быстрого обменного процесса (высокочастотный переход электрона). При понижении температуры этот сигнал постепенно расщепляется, причем наиболее четко структура сигналов, указывающих на наличие двух неэквивалентных атомов Ре, проявляется лишь при 17 К. Сделан вывод о переходе электрона в пределах фрагмента РезО, а энергия активации оценена в 470 см . [c.127]

    Интенсивному применению техники ЭПР для обнаружения и исследования электрохимически генерированных (ЭХГ) органических анион- и катион-радикалов положили начало опубликованные в 1961—1962 гг. работы А. Маки и Д. Джеске Дж. Френкеля и сотр. Такое сочетание спектроскопии ЭПР с ЭХГ связано с необходимостью учета ряда специфических обстоятельств. Главная особенность ЭХГ состоит в том, что образование радикальных частиц происходит не в объеме раствора, а на границе раздела фаз электрод/раствор и контролируется скоростью диффузионного подвода молекул деполяризатора к поверхности электрода. Тем самым ограничиваются возможности создания в растворе достаточно высокой концентрации ион-радикалов, необходимой для получения надежного спектра. Этот недостаток обычно не удается скомпенсировать увеличением концентрации исходного органического вещества, так как появление обменных взаимодействий ион-радикалов между собой, а также между ион-радикалами и молекулами реагента вызывает уширение линий и приводит к потере СТС. [c.225]


Смотреть страницы где упоминается термин спектры обмен: [c.345]    [c.39]    [c.110]    [c.36]    [c.204]    [c.281]    [c.346]    [c.125]    [c.40]    [c.55]    [c.87]    [c.271]    [c.272]    [c.49]    [c.927]    [c.25]    [c.88]    [c.75]   
Механизмы неорганических реакций - Изучение комплексов металлов в растворе (1971) -- [ c.469 , c.486 ]




ПОИСК







© 2025 chem21.info Реклама на сайте