Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические взаимодействия энергия

    С помощью термохимических расчетов можно определить энергию химических связей, энергию кристаллической решетки, энергию межмолекулярного взаимодействия, энтальпию растворения и сольватации (гидратации), энергетические эффекты фазовых превращений и т. д. [c.164]

    При сопоставлении химических свойств элементов легко установить, что некоторые электроны атома могут значительно легче отделяться от него, чем другие. Это доказывает, что некоторые из электронов вращаются на большем расстоянии от ядра, чем остальные. Так, атомы натрия и калия (первая группа периодической системы) сравнительно легко переходят в состояние однозарядных положительных ионов, т. е. теряют по одному электрону. В настоящее время удается отделить от них и вторые и следующие электроны, превращая атомы в положительные ионы соответственно двухзарядные, трехзарядные и т. д. Однако это можно достигнуть не химическими взаимодействиями, а применяя другие, более сильные средства воздействия (с большей затратой энергии). [c.32]


    Таким образом, с точки зрения молекулярной теории положительная свободная поверхностная энергия (т. е. поверхностное натяжение) обусловлена силами притяжения между молекулами, находящимися внутри жидкости и на ее поверхности. Величина поверхностного натяжения определяется межмолеку-лярными силами, геометрией молекул жидкости и числом атомов в них. Кроме того, на нее влияют свободная энергия меж-молекулярных сил, ориентация молекул в поверхностном слое, определяющая направление силовых полей, а при контакте двух жидкостей — еще и присутствие молекул одной жидкости во второй и химическое взаимодействие молекул обеих граничащих жидкостей [211]. [c.186]

    Катализатор вступает в химическое взаимодействие с одним или обоими реагирующими веществами, образуя при этом промежуточное соединение (АХ) и входя в состав активированного комплекса. После каждого элементарного химического акта он регенерируется и может вступать во взаимодействие с новыми молекулами реагентов. Таким образом, катализатор направляет химическую реакцию по принципиально новому пути, который отличается от некаталитического числом и природой промежуточных соединений, составом и строением переходного комплекса. Природа сил, вызывающих взаимодействие катализатора и реагентов, та же, что и для обычных химических соединений. Это прежде всего ковалентная связь, донорно-акцеп-торное и кулоновское взаимодействие, водородная связь. Для возникновения химической связи требуется определенное соответствие молекулярных орбиталей реагирующих молекул и катализатора до энергии и симметрии, поэтому катализаторы обладают свойством ус- [c.617]

    Энергия активации 3—один из основных параметров, который характеризует скорость химического взаимодействия. Энергия активации процесса зависит от природы реагирующих веществ. Чем больше энергия активации, тем меньше (при прочих равных условиях) скорость реакции. Энергия активации необходима в основном для ослабления химических связей в исходных веществах и для преодоления отталкивания между электронами, которое возникает при сближении молекул и атомов взаимодействующих веществ и мешает их столкновению. [c.122]

    Энергия активации — это то избыточное количество энергии по сравнению со средней ее величиной, которой должна обладать молекула в момент столкновения, чтобы быть способной к химическому взаимодействию. Энергия активации связана [c.135]


    Число частиц, обладающих необходимой для осуществления химического взаимодействия энергией активации, увеличивается при повышении температуры. Поэтому, повышая температуру, можно ускорить многие медленно протекающие реакции и достичь равновесное состояние за значительно более короткий промежуток времени. Этим часто пользуются на практике — реакции осуществляют при нагревании раствора. Так можно провести химические взаимодействия при температурах, которые не превышают температуру кипения раствора. Для водных растворов это несколько выше 100°С. Если для ускорения химической реакции требуется более высокая температура, смесь реагирующих веществ сплавляют. [c.40]

    Энергия активации — это избыток внутренней энергии по сравнению со средней энергией для данной температуры, которым должны обладать реагирующие молекулы, чтобы их столкновение приводило к химическому взаимодействию. Энергию активации выражают в джоулях на моль (дж/моль). После соответствующих математических преобразований для выражения энергии активации получают довольно простое уравнение  [c.148]

    Рис. 164 поясняет эти представления. На нем по вертикальной оси отложена энергия рассматриваемой системы молекул, а по горизонтальной — ход реакции. Если прямая реакция (переход из состояния / в состояние II) является экзотермической, то общий запас энергии продуктов реакции меньше, чем исходных веществ, т. е. система в результате этой реакции переходит на более низкий энергетический уровень (с уровня / на уровень II) . Разность уровней I и II равна тепловому эффекту реакции. Уровень К определяет тот наименьший запас энергии, которым должны обладать молекулы, чтобы их столкновения могли приводить к химическому взаимодействию. Разность между этим уровнем К и уровнем I представляет энергию активации прямой реакции Е, а разность между уровнями К и // —энергию активации обратной реакции Е. Таким образом, по пути из исходного состояния в конечное система должна перейти через своего рода энергетический барьер. [c.478]

    Наложение небольшого напряжения (деформации десятки процентов) способствует образованию и раскрытию трещин, последнее определяется скоростью химического взаимодействия. Энергия активации увеличивается примерно до 83 кДж/моль.. Дальнейшее увеличение деформации до сотен процентов вызывает рост и примерно до 125 кДж/моль. Это можно связать как с проявлением группового разрыва ориентированных молекул, так и с тем, что и отражает суммарный процесс разрушения под действием агрессивной среды и под действием собственно механического напряжения, имеющего большую энергию активации. Возрастание и с увеличением деформации наблюдалось для многих систем с жидкими (резина из СКФ — НЫОз, СКС-30-1—вода) и газообразными агрессивными средами, а также в их отсутствие. [c.125]

    Одним из наиболее распространенных в химической практике методов ускорения химических реакций является катализ. В присутствии катализатора изменяется путь, по которому проходит суммарная реакция, а потому изменяется ее скорость.Катализаторы—это вещества, изменяющие скорость реакции за счет участия в промежуточном химическом взаимодействии с компонентами реакции, но восстанавливающие после каждого цикла промежуточного взаимодействия свой химический состав. Увеличение скорости катализируемой реакции связано с меньшей энергией активации нового пути реакции.  [c.204]

    Изложенное означает, что энтропия является мерой неупорядоченности состояния системы. Она растет не только с повышением температуры, но и при плавлении (и возгонке) твердого вещества, при кипении жидкости, т. е. при переходе вещества из состояния с меньшей энергией в состояние с большей энергией. Ростом энтропии сопровождаются и процессы расширения, например газа, растворения кристаллов, химическое взаимодействие, протекающее с увеличением объема, например диссоциация соедннения, когда вследствие роста числа частиц неупорядоченность возрастает. Наоборот, все процессы, связанные с увеличением упорядоченности, такие как охлаждение, отвердевание, конденсация, сжатие, кристаллизация из растворов, химическая реакция, протекающая с уменьшением объема, например полимеризация, сопровождаются уменьшением энтропии. Возрастание энтропии вещества при повы- [c.177]

    Таким образом, по теории энергетического катализа, значительную роль в образовании химически активных частиц в разряде (в приведенных выше примерах — свободных атомов) могут играть электронно возбужденные атомы и молекулы, главным образом, вероятно, в метастабильном состоянии. Аналогия с катализом состоит в том, что сами электронно возбужденные состояния непосредственно в акте химического взаимодействия не участвуют, а служат лишь передатчиками энергии от электронного газа плазмы разряда к активируемым молекулам, облегчая, таким образом, образование активных комплексов. В приведенных примерах роль энергетических катализаторов играют атомы и молекулы добавок. Аналогичные функции могут выполнять и электронно возбужденные участники реакции, передавая энергию при ударах второго рода молекулам, себе подобным, или молекулам других участников реакции. Например, при синтезе аммиака возможен процесс [c.256]


    Реакционноспособными являются лишь те частицы, энергия которых выше некоторой величины, ей соответствует порог скорости . Согласно изложенным представлениям энергия активации — это та минималь.ная избыточная (по сравнению со средней) энергия теплового движения некоторых молекул в реакционной смеси, благодаря которой при столкновении молекул возможно химическое взаимодействие. Доля активных молекул в реакционной смеси, обычно очень мала. [c.219]

    Зарождение цеии требует энергии и может быть вызвано поглощением квантов света, особо благоприятными соударениями, термической диссоциацией, химическим взаимодействием молекулы с атомами или ионами (на поверхности стенок или в объеме сосуда), действием ионизирующих излучений и т. п. В некоторых случаях процесс зарождения цепей оказывается гетерогенным и протекает на стенках реакционного сосуда. Например, в реакции [c.351]

    Во многих аналогичных ситуациях, когда прочность твердых тел различной природы, контактирующих с теми или иными средами, оказывается пониженной, эта объясняется уменьшением поверхностной энергии твердого тела в результате адсорбции, хемосорбции, смачивания и других физико-химических взаимодействий [254]. Такой подход, впервые предложенный П. А. Ребиндером, оказывается весьма плодотворным и при описании геологических процессов. Однако сложность природных систем и недоступность большинства из них. прямому наблюдению требует большой осторожности в выводах и тщательного учета всех взаимосвязанных факторов, от которых зависит возможность эффекта и степень его проявления. К этим факторам относятся химический состав твердого тела и среды, определяющий характер межатомных взаимодействий реальная структура (дефектность) твердого тела условия деформирования. [c.92]

    Температурная зависимость константы скорости реакции остается, таким образом, аррениусовой, причем кажущаяся энергия активации Е равна Е — При больших теплотах адсорбции кажущаяся энергия активации может даже стать отрицательной мы встречаемся при этом с весьма редким случаем замедления химической реакции с ростом температуры, причиной которого является уменьшение равновесных степеней заполнения поверхности, не компенсируемое ускорением самого химического взаимодействия. [c.81]

    Из внешних причин, влияющих на физико-химические взаимодействия между частицами четвертого уровня, существенный вклад вносят эффекты пятого уровня. Так, увеличение мощности на перемешивание приводит, с одной стороны, к увеличению частоты столкновений кристаллов, возрастанию кинетической энергии частиц. Рост кинетической энергии частиц приводит к более быстрому преодолению потенциального барьера, возникающего между частицами за счет сил отталкивания, что в свою очередь способствует агрегации кристаллов. С другой стороны, увеличение мощности на перемешивание приводит к таким явлениям в ансамбле кристаллов, как дробление, истирание кристаллов, появление вторичных зародышей. Явления вторичного зародышеобразования могут протекать только на четвертом уровне. Вторичные зародыши образуются при столкновениях кристалл — кристалл, кристалл — мешалка, кристалл — стенка аппарата. [c.10]

    При растворении одной жидкости в другой без значительного химического взаимодействия, например при взаимном растворении двух близких между собой углеводородов, для перехода молекул в смежную фазу почти не требуется затраты энергии. В этом случае для достижения полного смещения компонентов достаточно теплового движения (энтропийный фактор). [c.329]

    Как мы видели в 191, в реакция)(, протекающих с конечной скоростью, число столкновений между молекулами, приводящих к химическому взаимодействию (число эффективных столкновений), составляет лишь некоторую часть общего числа столкновений (большей частью лишь малую долю их). Можно показать, что эффективными оказываются лишь столкновения между такими молекулами, которые в момент столкновения обладают некоторым избытком внутренней энергии по сравнению со средней (для данной темперагуры) величиной. Именно этот избыток энергии. [c.477]

    Только активные молекулы, т. е. молекулы, обладающие в момент столкновения необходимым избытком энергии (в нужной форме), могут вступать в соответствующее химическое взаимодействие. [c.478]

    С ЭТОЙ точки зрения зарождение цепи всегда заключается в реакции образования атома или радикала с ненасыщенной валентностью, как, например, в реакции (а). Это может происходить в результате термической диссоциации какой-нибудь легко распадающейся молекулы (например, 12ч=г 1 + 1), при столкновении двух молекул, обладающих повышенной энергией, при ударе молекулы о стенку сосуда или в особенности при химическом взаимодействии ее с атомами или ионами (поверхности стенки или находящимися в объеме сосуда), способными вызвать при этом образование радикала, В разных реакциях, а также в зависимости от условий, температуры и пр, тот или другой из этих путей приобретает главную роль. [c.485]

    Для оценки эффективности возможных путей воздействия на скорость гетерогенной реакции очень важно знать, какая из стадий ее является в данных условиях наиболее медленной и, следовательно, определяющей скорость реакции в целом. В одних случаях этой стадией являются процессы диффузии того или другого компонента реакции из объема фазы к поверхности раздела или наоборот. В других —само химическое взаимодействие на поверхности раздела. Различие между этими случаями наиболее сильно проявляется в зависимости скорости реакции от температуры. Скорость диффузионных процессов изменяется с температурой сравнительно слабо (примерно на 1—3% на градус), а скорость химического взаимодействия—значительно сильнее (примерно на 10—30% на градус, в зависимости от энергии активации). [c.489]

    В реакции А1 + Аг-> А3 + А4, катализируемой комплексными катализаторами, молекулы реагентов А , Аа, А3 и А выступают как лиганды по отношению к иону металла. Химическое взаимодействие между реагирующими молекулами А1 и Аг, координированными около центрального иона металла, облегчается благодаря поляризации молекул, понижению энергии отдельных связей и повышению вероятности оптимального расположения реагирующих молекул. Цент- [c.626]

    Повышенная энергия Движения электронов может достигаться при поглощении видимого света (или других электромагнитных колебаний) и переходе электронов на волее высокий энергетический уровень (как, например, при активации хлора в реакции Н2- -С12 = 2НС1). Энергия электронов в атомах может повышаться при разрыве валентной связи, например при диссоциации молекулы водорода на атомы или при образовании других атомов с ненасыщенной валентностью или свободных радикалов. Такая активация может осуществляться и при химических взаимодействиях (как, например, в реакции Ыа + С12 = НаС1 + С1) и при ударах молекул о стенку сосуда и пр. Наконец, молекулы могут активироваться действием электрического разряда, ультразвуковыми колебаниями, действием излучений различного рода и другими путями. [c.479]

    Важной особенностью катализа является сохранение ката — лизс1тором своего состава в результате промежуточных химических взаимодействий с реагирующими веществами. Катализатор не расходуемся в процессе катализа и не значится в стехиометрическом уравнении суммарной каталит ической реакции. Это означает, что катализ не связан с изменетн-тем свободной энергии катализатора и, следовательно, катализатор не может влиять на термодинамическое равновесие химических реакций. Вблизи состояния равновесия катализатор в равной степени ускоряет как прямую, так и обратную [c.79]

    Ценность этой классификации заключается в том, что именно природа промежуточного химического взаимодействия, а не агрегатное состояние реакционной системы определяет свойства, кото — рыми должен обладать активный катализатор. Так, при гомолити — ческом катализе разрыв электронных пар в реагирующем веществе обычно требует большой затраты энергии. Для того, чтобы тепловой эффект, а следовательно, и энергия активации этой ст адии не были бы слишком большими, одновременно с разрывом электронных пар должно протекать и образование новых электронных пар с участием ь еспаренных электронов катализатора. [c.80]

    В кинетическом отношении каталитическая реакция будет идти с большей скоростью, если в результате промежуточного химического взаимодействия катализатор будет снижать энергию активации химической реакции (или одновременно повышать пред— экспонент Аррениуса). Это правило согласуется с принципом компенсации энергии разрывающихся связей в катализе. Оно согласуется также с принципом энергетического соответствия мультип — летной теории A.A. Баландина. [c.88]

    Особо важное значение в химических процессах имеет термодинамический потенциал, т. е. изменение свободной энергии системы (А/ ). Выражая собой ту часть внутренней энергии системы, которая способна превращаться в полезную работу, величина ДР данного химического процесса служит тем самым мерой химического сродства реагирующих компонентов, т. е. мерой их реакционной способности. Чем больше абсолютная величина изменения свободной энергии или, что то же, чем больше значение максималыюи работы данного химического процесса, тем полнее они вступают между собой в химическое взаимодействие. Если мы говорим, что данные вещества реагируют между собой недостаточно энергично, то это означает, что они имеют небо,пьшое изменение свободной энергии в наблюдаемом процессе химического взаимодействия или, что то же, максимальная работа, которую требуется затратить на этот процесс, очень велика [c.167]

    Из этого соотношения следует, что работа сил трения йА для выделенного элементарного объема системы превраш,ается в теплоту dQ, а кроме того, расходуется на увеличение внутренней энергии на химическое взаимодействие (%1с1п1г) и некоторые другие виды превращений. Указанные параметры тесно связаны между собой. Исходя из энергетической гипотезы, изнашивание (отделение) материала наступает тогда, когда внутренняя энергия 7 достигает критического значения. Однако в общем случае в присутствии химически активных компонентов износ определяется также глубиной химических превращений. В свою очередь, оба перечисленных фактора зависят от dQ. [c.250]

    Как же эта сила связана с энергией, выделяемой в ядерных реакциях Вспомните, что вы знаете об энергии, получающейся из нефти или пищи. В химических реакциях- энергия выделяется, если связи в проду1 тах оказываются более прочными, чем в реагентах. Часто она выделяется в виде тепла. В ядерных реакциях сила взаимодействия частиц в ядре также может быть у продуктов больше, чем у реагентов. В результате тоже выделится энергия. Однако энергия, выделяемая в ядерных реакциях, настолько больше энергии, образующейся в химических реакциях, что должен существовать еще какой-то ее источник. [c.338]

    Наряду с химическим взаимодействием в реакторе протекает ряд физических процессов. Одна из фаз диспергируется в другой фазе. В процессе дисиергпрования и относительного движения фзз происходит формирование структуры двухфазного слоя и поверхности фазового контакта. Происходит межфазный обмен веществом и энергией. Обмен энергией осуществляется не только между двумя движущимися фазами, но и с конструктивными деталями реактора, которые оказывают возде1 1Ствие на механизм и скорость физических [c.22]

    Простейшая физическая модель реакции в растворах изложена в монографии Бенсона [1]. Эту модель, базирующуюся на представлениях Берналла, характеризуют три параметра — диаметр твердой сферы, аппроксимирующей реагирующие молекулы I — расстояние между центрами молекул, когда потенциальная энергия их взаимодействия может приближенно приравниваться к энергии взаимодействия на бесконечном удалении Пд — последнее значение энергии. При таком приближении диаграмма потенциальной энергии, представленная на рис. 2.5, имеет вид прямоугольной потенциальной ямы. При этом в качестве первого приближения принимается, что молекулы находятся в состоянии столкновения, когда потенциальная энергия их взаимодействия V кТ, а расстояние между ними I 1,7/ав1 где /дв — ближайшее расстояние между центрами реагирующих молекул. При такой модели скорость химического взаимодействия, кроме энергетического параметра Е (энергии активации), будеч определяться частотой столкновения молекул реагентов 2 и временем в, в течение которого молекулы удерживаются на расстоянии влияния силы взаимодействия, равной 1,7 ав. [c.31]

    В СОСТОЯНИЯХ, когда эта способность развита в сильной степени, атом водорода может настолько интенсивно взаимодействовать с электронами другого атома, что между ними устанавлн-иается довольно прочная связь (с энергией связи 5—7 ккал/моль н больше), которая может хорошо проявляться в спектрах. Однако она все же много слабее обычной химической связи (энергия которой составляет примерно 30—100 ккал/моль). Водородная связь возникает в результате междипольиого взаимодействия двух сильно полярных связей, принадлежащих различным молекулам (или одной и той же молекуле), но она в значительной степени усиливается вследствие взаимной поляризации связей, обусловленной указанными особенностями водородного атома. С другой стороны, деформация молекул, вызываемая образованием водородной связи, в соответствующих случаях способствует образованию донорно-акцепторных связей. [c.83]

    Еще во второй половине XIX века на основании опытных данных был сделан вывод, что свободные атомы некоторых элементов обладают значительно большей реакционной способностью, чем состоящие из них обычные двухатомные молекулы. Это было хорошо установлено, например для водорода в момент выделения (in statu nas endi). Обобщая имеющийся материал, Энгельс писал о большой роли, которую свободные (валентно ненасыщенные) атомы О, И, N и другие играют при химических взаимодействиях благодаря своей высокой реакционной способности. Обладая большей энергией, они находятся в активном состоянии и легко вступают во взаимодействия [c.483]

    В зависимости от условий вза-имодействия выделенный (вторичный) электрон может обладать самой различной кинетической энергией от энергии теплового движения частиц при данной температуре до энергии, близкой к энергии воздействовавшей (первичной) частицы. На рис. 193 представлено распределение вторичных электронов по энергии при выделении их действием первичных электронов с энергией 1 Мэе. Эти данные показывают, что большинство выделяющихся электронов обладает энергией, не превышающей 6 эв. В результате одна первичная частица может образовать в среднем примерно от десяти до ста тысяч вторичных электронов. Поэтому химическое взаимодействие в большинстве случаев вызывается действием не непосредственно частицей большой энергии, а действием вторичных электронов (или каких-либо других вторичных частиц). [c.554]

    Знак изменения энергии Гиббса характеризует направление самопроизвольного или несамопроизвольного протекания процесса при данных условиях, а равенство (<ЗАОг )р,г=0 определяет равновесное состояние в смеси химических веществ, между которыми возможно химическое взаимодействие. Равновесие имеет динамический характер, то есть при равновесии ипр= [c.192]

    Медленность установления термического равновесия обусловлена затрудненностью диссо] ,пации молекулы при ее соударении с другой молекулой, что заставляет предполагать, что в процессе рождения радикалов простой обмен энергии н()и соударении молекул играет лишь второстепенную роль по сравнению с химическим взаимодействием. [c.205]

    Рассматривая действие поверхности как результат химического взаимодействия активируемого вещества с катализатором, легко видеть, что рождение радикала на поверхности должно быть термодинамически более выгодным по сравнению с простой диссоциацией молекулы иа радикалы. Действительно, представляя процесс гетерогенно-каталитпч( Ского образования радикала уравнением КК К = К -+- К К (К — катализатор, К К — продукт хемосорбции радикала К ), мы видим, что ваталитический процесс дает выигрыш энергии (равный количеству энергии, выделяющейся при образовании экзотермического соединения К К) по сравнению с процессом КК = К К. Возможность гетерогенного процесса нсшосредственно вытекает из существования обратного ему процесса обрыва цепей на стенке Сем., папример, [17, 292, 481, 482]). [c.206]


Смотреть страницы где упоминается термин Химические взаимодействия энергия: [c.207]    [c.168]    [c.383]    [c.137]    [c.206]    [c.60]    [c.479]    [c.139]   
Механизмы быстрых процессов в жидкостях (1980) -- [ c.10 ]




ПОИСК





Смотрите так же термины и статьи:

Немилое. Взаимосвязь между скоростью распространения звука, массой атомов и энергией химического взаимодействия в твердых телах

Уравнение Морзе энергия химического взаимодействия

Химическая энергия

Энергия взаимодействия



© 2025 chem21.info Реклама на сайте