Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высаливание неполярных растворителей

    Системы, в которых действует адсорбционно-сольватный фактор, могут быть агрегативно устойчивы даже при практическом отсутствии электрического потенциала на поверхности частиц. Та-Кие системы значительно менее чувствительны к добавлению электролитов. Действие электролитов в этих системах подобно высаливанию ими в растворах неэлектролитов, т. е. сводится только к уменьшению активности растворителя (воды). Особенно большую роль адсорбционно-сольватный фактор приобретает в системах с неполярными средами, где возможности диссоциации, и соответственно образования двойного электрического слоя проявляются слабо. Для создания количественной адсорбционно-сольватной теории устойчивости напрашивается проведение аналогий с теорией ДЛФО. Однако если энергию притяжения в системах с адсорбционно-сольватным фактором устойчивости можно определить исходя из представлений Гамакера и де Бура, то количественная оценка энергии гидратации, выступающая в роли энергии отталкивания частиц, до сих пор не разработана. Для оценки агрегативной устойчивости в обсуждаемых системах часто используют толщину адсорбционного слоя, равную половине расстояния между частицами, на котором энергия молекулярного притяжения уменьшается до величины кТ. [c.338]


    Для растворенных веществ несложной структуры можно ожидать изменений в проявляемой ими тенденции удаляться из раствора или изменений коэффициентов активности под действием одновременно присутствующих в растворе веществ, влияющих на их растворимость летучесть и реакционную способность. Взаимодействия между макромолекулами в растворе, напротив, часто обратимо (и необратимо) влияют на структуру, что проявляется, например, в утрате активности при денатурации ферментов и изменениях точек плавления гелей. В равновесии кроме твердой фазы могут участвовать следующие типы частиц в растворе нативные макромолекулы, олигомерные или полимерные агрегаты, денатурированные макромолекулы. На рис. 1. 19 показаны структурные соотношения между этими типами частиц. К, е-т к пониманию наблюдаемого влияния солей и других растворенных веществ па эти равновесия состоит в том, что в каждом из состояний, изображенных на рис. 1.19, для растворителя доступны в различной степени те или иные группы молекул [253, 287, 351]. Хорошо известно, что конформации, которые макромолекулы,принимают в растворе, определяются стремлением к сближению всех гидрофобных групп между собой и к обеспечению доступа растворителя к гидрофильным группам [338]. В целом степень доступности молекулы для растворителя возрастает в ряду твердый белок < агрегированный или полимерный белок < нативный мономерный белок < денатурированный белок [287]. Однако, по-видимому, в каждом из этих случаев для растворителя оказываются доступными различные совокупности полярных и неполярных групп, причем степень доступности и состав групп зависят от природы макромолекулы. Влияние растворенных веществ на денатурацию, высаливание, деполимеризацию и т.д. можно объяснить, если учесть взаимодействия разных индивидуальных групп (заряженных, неполярных, полярных) [2871. [c.138]

    Системы, в которых действует адсорбционно-сольватный фактор, могут быть агрегативно устойчивы даже при практическом отсутствии электрического потенциала на поверхности частиц. Такие системы значительно менее чувствительны к электролитам. Действие электролитов в этих системах подобно эффекту высаливания ими в растворах неэлектролитов, т.е. сводится только к уменьшению активности растворителя (воды). Особенно большую роль играет адсорбционно-сольватный фактор в системах с неполярными средами, в которых возможности диссоциации и соответственно образования двойного [c.389]


    Детали микроскопического механизма влияния концентрированных растворов солей на белки, пептиды, нуклеиновые кислоты и другие полярные растворенные вещества довольно неопределенны. Высаливание этих соединений и их составных частей, по-видимому, происходит по слон ному механизму, являющемуся результатом наложения нескольких различных механизмов, как и в случае высаливания менее полярных соединений. Значения кд для полярных растворенных веществ меньше, чем для неполярных того же объема, так как полярные молекулы сильнее взаимодействуют с растворителем при достаточно высокой полярности наблюдается всаливание. Теория, основанная на рассмотрении внутреннего давления, но-видимому, дает в настоящее время наиболее удовлетворительное объяснение высаливанию как полярных, так и неполярных веществ. [c.295]

    Белки могут образовать с липидами растворимые и нерастворимые комплексы. К первому типу принадлежат липопротеины крови и других жидкостей организма животных. Плазма крови, несмотря на то, что она представляет собой прозрачную жидкость, содержит 0,5—0,7% нерастворимых липидов. Значительная часть этих липидов не может быть извлечена из плазмы обычно применяющимся для этой цели эфиром или другими неполярными растворителями. Машбёф рассматривает это как доказательство того, что указанная часть липидов находится в соединении с белками, образуя комплексы, которые он назвал синапсами [3]. Эти липопротеиновые комплексы осаждаются при обычном высаливании сернокислым аммонием [4]. Некоторое количество липидов можно обнаружить также во фракциях белков, полученных электрофоретическим путем [5]. Комплексы липопротеинов расщепляются при комнатной температуре этиловым спиртом и ацетоном, причем большая часть липидов, отцепившихся от комплекса после обработки спиртом, может быть извлечена эфиром. Для того чтобы избежать денатурации белков, рекомендуется производить расщепление комплекса липопротеинов спиртом и эфиром при низких температурах [6] или путем повторного замораживания и оттаивания этих комплексов в присутствии эфира 7]. [c.228]

    Гораздо удачнее оказывается полуэмпирическое рассмотрение проблемы высаливания, основанное иа учете влияния солей на плотность когезионной энергии или внутреннее давление воды [25, 45, 49]. Внесение неполярной молекулы в воду можно разделить на две стадии разъединение молекул воды с образованием полости, в которой может поместиться вносимая молекула, и внесение молекулы в эту полость. При растворении неполярных молекул, которые не могут сильно взаимодействовать с водой, основная часть свободной энергии, требуемой для осуществления процесса, должна затрачиваться на уменьшение взаимного сцепления молекул воды на первой стадии. Это основная причина низкой растворимости органических веществ в воде, если их молекулы недостаточно полярны, чтобы, взаимодействуя с водой на второй стадии, компенсировать эти затраты свободной энергии (гл. 8). Таким образом, добавление какого-либо вещества, способного увеличивать среднюю когезионную энергию, т. е. энергию сцепления молекул воды между собой, будет затруднять их раъединение на первой стадии процесса растворения. Напротив, добавление таких веществ, как спирты, которые способны уменьшать среднее взаимное сцепление молекул воды, будет облегчать этот процесс. Большинство солей увеличивает среднюю силу взаимного сцепления молекул воды и плотность когезионной энергии водного раствора. Это проявляется экспериментально в электро-стрикции и возрастании поверхностного натяжения. Таким образом, в соответствии с рассмотренной моделью в большинстве случаев должно наблюдаться высаливание неполярных веществ, неспособных сильно взаимодействовать с водой. Высаливание можно рассматривать просто как выталкивание неполярных молекул, вызываемое электрострикцией и увеличением средней силы взаимного сцепления молекул растворителя в присутствии соли. [c.291]

    В отличие от лиофобных золей, растворы высокомолекулярных веществ являются термодинамически устойчивыми обратимыми истинными растворами. Они подчиняются правилу фаз и их устойчивость определяется соотношением энергетического (ДЯ) и энтропийного (ТД5) членов в уравнении (VIII. 1). Для растворов полярных полимеров, обычно обладающих жесткими цепями, основное значение имеют изменения ДЯ, в значительной мере зависящие от сольватации. Тепловые эффекты, изменения упругости пара, сжимаемости и других свойств растворов при сольватации указывают, что наиболее прочно связанная часть растворителя составляет около одного слоя молекул вокруг полярных групп полимера (табл. 15). Для растворов неполярных полимеров с гибкими цепями основное значение имеют изменения энтропии смешения, во много раз превышающие идеальные значения, и непосредственно связанные с гибкостью макромолекул в растворах. Различные соотношения ДЯ и Д5, приводящие к возможности самопроизвольного растворения полимеров (Д2<0) приведены в табл. 16. Нарушение устойчивости растворов полимеров при понижении температуры, добавлении нерастворяющей жидкости или высоких концентраций солей приводит к различным случаям расслоения на две фазы, выпадения полимеров, высаливания белков и др. Зависимость растворимости полимеров от молекулярного [c.196]


    Электростатическая теория высаливания, основанная на рассмотрении диэлектрической проницаемости раствора, была развита Дебаем, Кирквудом и другими. Диэлектрическая проницаемость, безусловно, должна влиять на растворимость, однако макроскопическая диэлектрическая проницаемость слишком приближенно характеризует сольватационную способность растворителя при изменении ее в более или менее широких пределах. Теории этого типа обладают двумя серьезными недостатками во-первых, они не объясняют больших различий в высаливающей способности различных солей во-вторых, они не объясняют всаливания неполярных соединений под действием некоторых солей (рис. 4). В табл. 3 сопоставлены экспериментально найденные константы высаливания для бензола с данными, вычисленными по теории Дебая и по модифицированному Кирквудом варианту этой теории. Очевидно, эти теории предсказывают слабые различия между разными солями, и, что особенно характерно, из них следует, что бромид тетраметиламмония должен вести себя как обычная соль, хотя в действительности он всаливает бензол [25, 45]. Электростатические теории могут быть улучшены путем учета дополнительных факторов. Допускают существование оболочки жесткоориентированных молекул гидратной воды вокруг небольших с высокой плотностью заряда ионов, из которой полностью исключены молекулы органических веществ [46]. Производится также оценка си.[ взаимодействия Ван-дер-Ваальса — Лондона между солью и растворенным органическим веществом. К сожалению, эти модификации теории не устраняют всех трудностей, если рассматривать достаточно широкий ряд солей. [c.290]

    Основная причина агрегации белков заключается, вероятно, в электростатических и вандерваальсовых силах, сходных с силами, действующими при высаливании белков в отсутствие органического растворителя. Гидрофобные взаимодействия имеют здесь меньшее значение из-за солюбилизирующего влияния органических растворителей на неполярные участки белковой глобулы. Было установлено, что вблизи изоэлектрической точки белков осаждение происходит при более низкой концентрации органического растворителя. Это подтверждает предположение о том, что агрегация, происходящая в данном случае, сходна с агрегацией, наблюдающейся при изоэлектрическом осаждении белков. На рис. 3.9 схематически изображены молекулы белков в смеси воды с органическим растворителем агрегация здесь происходит за счет взаимодействий между противоположно заряженными участками на поверхности белков. [c.74]


Смотреть страницы где упоминается термин Высаливание неполярных растворителей: [c.166]    [c.166]    [c.49]    [c.295]   
Катализ в химии и энзимологии (1972) -- [ c.290 ]




ПОИСК





Смотрите так же термины и статьи:

Высаливание

Растворитель неполярный



© 2024 chem21.info Реклама на сайте