Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод изменения упругости пара

    Графический метод подсчёта потерь по изменению упругости паров нефтепродуктов [c.47]

    Важной характеристикой является поведение коллоидных частиц относительно полупроницаемых мембран. Различие в концентрации раствора по обе стороны мембраны приводит к различной активности растворителя, проявляющейся в осмотическом давлении и изменении упругости пара. Неспособность к прохождению через полупроницаемые мембраны, являющаяся од[шм из характерных отличий коллоидных систем от растворов низкомолекулярных веществ, используется в методах диализа и ультрафильтрации для очистки и концентрирования растворов. Дополнительное наложение постоянного электрического поля — в методах электродиализа и электроультрафильтрации — позволяет значительно ускорить удаление электролитов (см. табл, 3), [c.51]


    Получили распространение д,ва метода изучения кинетики процесса ксантогенирования по изменению упругости паров СЗг в реакционном объеме и по количеству образовавшихся продуктов реакции. Первый использован в работе Шерера [27] и по существу широко применяется в настоящее время для контроля окончания процесса по возникновению вторичного вакуума [28]. Типичная кинетическая кривая для температуры 30 °С приведена на рис. 4.6. [c.89]

    Коэффициенты активности были введены первоначально как эмпирические величины, которые можно найти при изучении эффектов, характерных для растворов в состоянии равновесия. Для этого используют такие явления, как изменение упругости пара над раствором с изменением концентрации электролита, зависимость обратимой э. д. с. от состава раствора и т. п. Поскольку необходимость введения коэффициентов активности в уравнения для идеальных систем обусловлена различием между реальными и идеальными растворами, величина их не зависит от метода определения, и при заданных условиях и составе будет иметь одно и то же значение для любых равновесных процессов. Поэтому одни и те же коэффициенты активности могут применяться для описания различных равновесных явлений. Таблицы, в которых приведены эмпирические коэффициенты активности, представляют большую ценность. В то же время в пределах теории Льюиса коэффициенты активности оказываются лишь формальными поправочными множителями, которые не связаны непосредственно с природой растворов и не поддаются теоретическому расчету. Известно, что реальные растворы отличаются от идеальных дополнительной энергией взаимодействия между образующими их частицами. Коэффициенты активности, как количественное выражение изменения свойств электролитов при переходе от идеальных растворов к реальным, должны находиться, очевидно, в функциональной зависимости от энергии взаимодействия между частицами. [c.42]

    Коэффициенты активности были введены первоначально как эмпирические величины, которые можно найти при изучении эффектов, характерных для растворов в состоянии равновесия. Для этого используют такие явления, как изменение упругости пара над раствором с изменением концентрации электролита, зависимость обратимой э. д. с. от состава раствора и т. д. Поскольку необходимость введения коэффициентов активности в уравнения для идеальных систем обусловлена различием между реальными и идеальными растворами, величина их не зависит от метода определения и при заданных условиях и составе будет иметь одно и то же значение для любых типов равновесия. Поэтому одни и те л<е коэффициенты активности могут применяться для описания различных равновесных явлений. Таблицы, в которых приведены эмпирические коэффициенты активности, представляют большую ценность. В то же время в пределах теории Льюиса коэффициенты активности оказываются лишь формальными поправочными множителями, не связанными непосредственно с природой растворов и не поддающимися теоретическим расчетам. Известно, что реальные растворы [c.40]


    Изменение упругости пара данного вещества в зависимости, ог температуры может быть определено также и косвенными методами по изменению упругости пз[ров некоторого стандартного вещества например, воды). Для этого служат диаграммы Дюринга и Кокса. [c.453]

    Среди других динамических методов определения упругости паров над твердыми металлами, которые характеризуются очень малыми величинами упругости паров, следует назвать эффузионный метод, основанный на изменении скорости испарения через очень малое отверстие, а также метод взвешивания испаряющейся нити. [c.89]

    Методы, позволяющие определять сумму концентраций всех присутствующих в растворе частиц. К ним относятся методы измерения понижения точки замерзания, повышения точки кипения и изменения упругости пара растворителя. [c.298]

    Давления насыщенных паров азота и аргона при температуре жидкого кислорода (90, 13° К) соответственно равны 2 729 и 1 000 мм рт.ст. Полагая в данной области концентраций (1— 10% азота) приложимым закон Рауля, находим, что изменению содержания азота в аргоне на 1 % соответствует изменение упругости паров смеси на 17,29 мм рт.ст. Так как визуально можно без труда отметить уровень ртути в капиллярной трубке с точностью до 1 мм, очевидно, что чувствительность этого метода достаточно велика. [c.203]

    Теплоты испарения [62] обычно либо определяются непосредственно калориметрическим измерением количества тепла, необходимого для испарения известного количества вещества, либо вычисляются из изменения упругости пара с температурой. Ниже кратко описаны оба эти метода. При измерении теплоты, выделяющейся при конденсации известного количества пара [62, 145], а также при применении различных видоизменений метода смешения обычно получаются менее удовлетворительные результаты. [c.151]

    Методы исследования упругостей пара и скрытых теплот изменения агрегатных состояний [c.122]

    Полное уравнение кривой упругости пара (119) 8. Упрощенная формула упругости пара (121) 9. Методы исследования упругостей пара и скрытых теплот изменения агрегатных состоянии (122) [c.301]

    Применяя метод изопиестического измерения упругости пара, эти авторы непосредственно определили величину изменения осмотического коэффициента и смогли проверить уравнение (21), которое можно представить в следующем виде  [c.439]

    Понижение упругости пара над раствором полимера измеряется методом изотермической перегонки. В прибор со шлифом, помещенный в термостат, вносятся два маленьких полупроводниковых термистора. На один из них наносится капелька раствора полимера, на второй — капелька растворителя. Вследствие разности упругостей пара над обеими каплями начинается перегонка жидкости с капли чистого растворителя на каплю раствора, в результате чего возникает небольшая разность температур (порядка 0.01°) между обоими термисторами, которая может быть измерена по изменению сопротивления термистора, т. е. по дебалансу мостика Уитстона. Прибор калибруется с помощью известного низкомолекулярного вещества и в итоге измеряет осмотическое давление или молекулярный вес растворенного вещества. Прибор изотермической перегонки описанной конструкции позволяет измерять осмотические, т. е. среднечисленные молекулярные веса полимеров до величин 10 000—20 ООО. [c.107]

    Отсутствие хроматографических данных для многих классов органических соединений и крайне низкая упругость паров веществ, подлежащих разделению, очень сильно затрудняют правильный выбор условии хроматографического разделения. Многие вещества с повышением температуры подвергаются химическим изменениям. Во многих случаях для изучения сложных вопросов механизма и направленности химических реакций метод газо-жндкостной хроматографии должен обеспечивать разделение весьма мало различающихся между собой соединений, например геометрических и структурных изомеров или веществ с очень близкими физическими свойствами. [c.186]

    Исследование гидратации пропилена при повышенном давлении проводилось в основном с целью проверки результатов, полученных при изучении кинетики этой реакции нри давлениях, не превышающих атмосферное, в статических условиях [1]. В обоих случаях в качестве катализатора использовалась фосфорная кислота. При исследовании кинетики гидратации пропилена в статических условиях мы, использовав метод 12] устранения диффузионных ограничений путем нанесения кислоты тонким слоем на стеклянные трубки, определили абсолютную (максимальную) активность фосфорной кислоты для реакции, которую можно характеризовать константой скорости А,. Величина практически не зависящая от начального давления пропилена, резко меняется с изменением начального давления воды. Это обусловлено тем, что упругость паров воды над кислотой и концентрация кислоты, а следовательно, и ее каталитическая активность тесно связаны. Показано, что при 117,5  [c.549]


    Другие разнообразные косвенные методы основаны на измерении плотности спирта после выщелачивания образца угля безводным реагентом [18], измерении электропроводности угля с изменением влажности [19], измерении показателя преломления реагента, использованного для выщелачивания угля [20] и измерении упругости паров воды над образцом [21]. Все они в той или иной мере подвержены ошибкам в зависимости от природы образца угля. [c.17]

    В зависимости от состава раствора изменяются и свойства раствора, характеризующие равновесие удельный вес, теплоемкость, вязкость, электропроводность, упругость пара и др. Таких измеримых свойств, зависящих от состава раствора, насчитывается и исследуется для технических целей более двадцати. Соотношение между составом равновесной системы и ее свойствами можно выразить методами графического изображения функции состав-свойство , строя прямоугольные, треугольные или объемные диаграммы, которые изображают геометрически изменение свойств в функции состава системы. [c.40]

    Анализ продуктов жизнедеятельности организмов является одной из самых трудных задач биологии, химии и физики. В живом организме в процессе обмена веществ синтезируются и распадаются сложнейшие соединения (белки, углеводы, жиры, ферменты, витамины, гормоны и т. д.). Для очистки и разделения веществ в органической химии и биохимии широко применяются методы, основанные на различиях в упругости пара (обычная перегонка, перегонка с водяным паром, фракционная перегонка, перегонка в вакууме, сублимация и др.) и растворимости веществ (распределение между двумя несмешивающимися жидкостями, экстракция, осаждение специально подобранными веществами или изменением pH раствора и другие приемы). Бурное развитие химии в XX в. вызвало необходимость создания принципиально нового метода выделения и очистки природных веществ, применяемого в тех случаях, когда приведенные выше приемы вызывают глубокие изменения состава выделяемых веществ и когда последние находятся в природном материале в сложных смесях или в ничтожном количестве. Новый метод разделения веществ был открыт в 1903 г. выдающимся русским ученым М. С. Цветом и назван им хроматографическим методом. [c.5]

    Метод искровой масс-спектрометрии широко применяется для анализа твердых материалов с высокой температурой плавления и низкой упругостью пара их анализ рассмотрен в соответствующем разделе этой книги. Этим же методом можно анализировать твердые легкоплавкие и химически активные образцы, но для получения приемлемых результатов необходимы специальная подготовка образцов и методика анализа с учетом температуры плавления и парциального давления. Возможно, что твердые легкоплавкие образцы необходимо охлаждать во время обыскривания и особенно в процессе анализа, чтобы избежать их плавления. Локальное плавление или перегрев образца сильно влияют на результаты анализа из-за изменения давления пара, параметров ионизации, эффекта фракционирования пара или перераспределения компонент между твердой и жидкой фазами. Эти неконтролируемые эффекты, несомненно, приводят к разбросу аналитических результатов и значений коэффициентов относительной чувствительности. Однако эти недостатки искровой масс-спектрометрии гораздо чаще проявляются при определении средних содержаний, нежели при идентификации и измерении неоднородности в твердом теле. Примеси или компоненты легкоплавких материалов часто образуют неоднородные включения во второй фазе, а иногда именно об этом желательно иметь информацию. Вопрос о неоднородности состава будет подробно обсужден позже на примере определения углерода в металлическом натрии. Получение количественной информации о распределении изотопов, элементов или соединений в микрообъемах твердого тела в будущем будет, безусловно, главной областью применения искровой масс-спектрометрии. [c.327]

    Величина упругости пара, рассчитанная по этому методу, представляет действительное (механическое) давление, которое можно измерить соответствующим прибором. Эту величину не следует смешивать с летучестью вещества, равной произведению коэфициента активности на давление пара. Методы вычисления зависимости давления пара от температуры и давления, а также зависимости летучести от давления [см. уравнение (5.22)] уже были рассмотрены здесь представляет интерес исследование изменения летучести с температурой при постоянном давлении. [c.67]

    Поскольку манометрическое измерение давления при непосредственном наблюдении или при помощи электрического контакта при высоких температурах чрезвычайно затруднительно, в этом случае наблюдают изменение веса или выталкивающей способности в приборе, приведенном на рис. 326 [53]. Пространства внутри и снаружи колокола представляют собой не что иное, как два колена манометра. Колокол, внутрь которого особым методом в высоком вакууме вводят вещество, удерживается сверху проволокой, прикрепленной к пружине. Как и в других методах измерения упругости пара, давление внутри колокола компенсируют внешним давлением газа до тех пор, пока колокол не воз-, вратится в первоначальное положение, что можно заметить по верхней метке. В качестве материала для колокола подходит Мо, который не образует сплава с 5п, служащим в качестве запорной жидкости оба эти материала устойчивы по отношению к ТЬС14 и т. п. вплоть до 1000°. В качестве запорной жидкости в данном случае может служить само жидкое вещество. [c.564]

    Метод определения коэффициента активности по изменению упругости паров растворителя над раствором солей различной концентрации в конечном итоге также учитывает свободную энергию разведения. Поэтому если не связывать результаты подсчетов с формальными выводами о сверхидеальных свойствах растворов, то расчеты коэффициентов активности не приводят к ошибочным результатам. [c.44]

    Когда в 1970-ые годы было введено законодательство о снижении содержания свинца в бензине, нефтеперерабатывающие заводы должны были привести в соответствие состав бензина для поддержания или повышения октанового числа компаундированного бензина. Одним из наиболее широко распространенных методов осуществления этого было повышение жесткости процесса реформинга, в результате чего получали бензин с более высоким содержанием ароматики (включая бензол). Теперь, спустя почти два десятилетия, нефтеперерабатывающие заводы могут оказаться перед лицом очередного изменения состава, которое потребуется, чтобы снизить упругость паров бензина, уменьшить содержание в нем ароматики и, в частности, бензола и повысить содержание оксигенированных соединений в ответ на требования о внедрении незагрязняющего воздух топлива. В этой статье рассмотрено, какое воздействие на нефтеперерабатывающие заводы окажет оксигенирование топлива и другие возможности. [c.167]

    ИНГИБИТОРЫ КОРРОЗИИ, вещества, введение к-рых в относительно небольших кол-вах в агрессивную среду, полимерное покрытие, смазку или упаковочный материал вызывает заметное замедление коррозии. Условно подразделяются на адсорбционные и пассивирующие. Первые защищают металл благодаря воздействию на кинетику электродных процессов, происходящих при коррозии. Торможение м. б. обусловлено неносредств. исключением пов-сти, покрытой И. к., из коррозионного процесса изменением структуры двойного электрич. слоя блокировкой активных центров и изменением условий адсорбции участников коррозионного процесса. Пассивирующие И. к. способствуют образованию на металле оксидных, гидроксидных и др. пленок и переводят металл в пассивное состояние (см. Пассивность металла). Различают ингибиторы кислотной коррозии и ингибиторы атмосферной коррозии (т. н. летучие ингибиторы). Последние обладают повьпп. упругостью пара, что позволяет им насыщать окружающую металл атмосферу илн пространство между металлом и упаковочным материалом. Применение И. к. — эффективный метод борьбы с коррозией, особенно в машиностроении, приборостроении, нефте- и газодобывающей пром-сти. [c.219]

    Среди факторов, определяющих величину константы экранирования протонов, в начале разд. 1 упоминалось и влияние растворителя. В общем можно полагать, что все эффекты, которые мы до сих пор обсуждали как внутримолекулярные, проявляются также и на межмолекулярном уровне. Например, установлено, что резонансные сигналы веществ, растворенных в ароматических растворителях, проявляются в более сильном поле, чем в растворителе алифатической природы. Этот эффект был приписан диамагнитному кольцевому току бензола и его производных. Подобное же влияние соседних молекул, связанное, однако, либо с экранированием, либо с дезэкранированием, может проявляться в результате магнитной анизотропии кратных связей или влияния электрического поля молекул с большими дипольными моментами. Эффекты растворителя становятся особенно значительными, если межмолекулярные взаимодействия в растворе приводят к образованию специфических комплексов. За счет диполь-дипольных или вандерваальсовых взаимодействий некоторые взаимные пространственные ориентации взаимодействующих молекул становятся более предпочтительными, чем другие. В результате могут наблюдаться специфические изменения резонансных частот отдельных протонов растворенного вещества. Их в свою очередь можно использовать для получения сведений о строении таких комплексов. Поэтому спектроскопия ЯМР оказалась важным методом исследования межмолекулярных взаимодействий. Изменения химических сдвигов под влиянием растворителя обычно меньше 1 м. д. Мы уже рассмотрели в гл. П1 их специальные применения и последствия для резонансных частот эталонных веществ. Для избежания осложнений, вызванных влиянием растворителя, рекомендуется использовать такие инертные растворители, как тетрахлорид углерода или циклогексан. Можно исключить, кроме того, и концентрационные эффекты, если провести измерения при нескольких концентрациях вещества и экстраполировать данные к бесконечному разбавлению. Измерения в газовой фазе, где межмолекулярные взаимодействия сводятся к минимуму, стали осуществимы и для веществ с высокой упругостью паров только после развития импульсных Методов с фурье-преобразованием. [c.109]

    Все указанные методы получения не пригодны для выделения Sm, Ей и Yb, так как восстановление идет лишь до стадии образо-ван-ия LnXj, обладающих к тому же значительной летучестью 18161. Известен лишь один случай восстановления ЗтВгз с Ва, когда удалось получить металлический Sm в виде слитка, но выход по этой реакции очень мал, вероятно, из-за сублимации как в виде SmBfa, так и в виде металла [1544]. Поэтому эти элементы получают в виде металлов лишь при восстановлении окислов методами, объединяемыми во вторую группу. Ввиду того, что все три металла при температурах реакции обладают высокими упругостями паров, удобно переводить металлы непосредственно в дистиллят [814, 1149, 1545]. Кристаллы образ)потся либо на стенках тиглей, либо на дистилляционных колонках длиной несколько сантиметров, присоединенных к тиглям. Как видно из приложения 4, выход металла при таком проведении реакции сильно варьирует с изменением условии и существенно зависит от времени процесса. Для восстановления могут быть использованы кальций, барий, алюминий и даже лантан, причем преимущество последнего в том, что благодаря низкой летучести он не загрязняет дистиллята. Количество примесей здесь несколько больше, чем в металлах, полученных восстановлением галогенидов. [c.23]

    Лиофильная сушка представляет собой процесс обезвоживания, в котором вода испаряется из замороженных суспензий или увлажненных твердых тел при температуре ниже О °С и при низком давлении. Особую ценность такой метод имеет для биохимии, так как позволяет без разрушения осуш,ествлять высушивание тканей, клеток, плазмы крови, лимфы, микроорганизмов и т. п. [112, 273]. Обычно таким путем удается удалить из клеток млекопитающих до 75% влаги до наступления необратимых изменений [249 ]. С помощью этого метода некоторые пищевые продукты, например соки цитрусовых или мясные продукты, могут быть высушены без потери витаминов и веществ, определяющих их вкусовые качества, и при этом сохраняют способность растворяться в воде. Многочисленные преимущества метода лиофильной сушки подробно обсуждаются Флосдорфом [138], из них важнейшими являются следующие 1) низкотемпературное обезвоживание позволяет избежать химического изменения многих термически неустойчивых материалов 2) другие соединения, кроме воды, имеют в условиях лиофильной сушки более низкую летучесть, причем при температурах ниже О °С снижение упругости пара этих веществ обычно существенно больше, чем у воды 3) высушивание при температурах, более низких, чем температура образования эвтектик, позволяет полностью исключить вспенивание 4) обычно в процессе сублимации растворенные вещества остаются равномерно распределенными в массе высушиваемого материала, так что сухой остаток получается в форме высокопористой массы, часто губчатой или рыхлой 5) явления коагуляции сводятся к минимуму, даже при высушивании лиофобных золей 6) в процессе сушки не происходит образования корок, так как лед постепенно испаряется и остается пористый высушенный остаток  [c.165]

    Вычисление кажущегося молекулярного ве-с а. Мы видим, что в растворах высокополимеров наблюдаются очень большие отклонения от закона Рауля. В том случае, когда АЛ = О и энтропия смешения равна идеальной энтропии смешения (в разбавленных растворах), закон Рауля должен выполняться, т. е. из значения относительной упругости пара мы можем вычислить молекулярный вес полимера. Практически этим методом определения молекулярных весов не пользуются, так как уже в 1%-ном растворе полимера молярная доля растворителя настолько близка к единице (для 1 %-ного раствора вещества с мол. весом 300 ООО = 0,999993), что нельзя обычными манометрами уловить такие незначительные изменения в относительной упругости пара растворителя. Если бы мы ничего не знали о молеку-иярном весе полимера и считали, что закон Рауля выполняется во всей области концентраций, то из данных относительной упругости пара по формуле (9) мы могли бы вычислить молекулярный вес М2 для определенных весовых соотношений компонентов. В этом случае мы получили бы значения так называемого кажущегося молекулярного веса М полимера, т. е. величину, эквивалентную молекулярному весу вещества, которое бы давало с данным растворителем идеальный раствор при данной концентрации. [c.259]

    Упругость насыщенных паров бензина, представляющих собой сложную смесь различных углеводородов, — величина переменная, зависящая от т-ры, концентрации компонентов в смеси, а также от соотношения паровой и жидкой фаз. При повышении т-ры У. п. б. повышается. Изменение упругости насыщенных паров бензина в зависимости от соотношения паровой и жидкой фаз связано с изменением концентрации различных углеводородов в топливе. При испарении бензина сначала испаряются преимущественно низкокипящие фракции с высокой упругостью паров, и таким образом испарение наиболее летучих фракций ведет к утяжелению жидкой фазы. Чем больше испаряется летучих фракций из бензина при данной т-ре, тем меньше упругость паров оставшейся жидкой части. Увеличение объема паровой фазы усиливает испарение легколету-яих фракций, и, следовательно, упругость насыщенных паров бензина будет тем меньше, чем больше отношение объема паровой фазы к жидкой. По стандартному методу, принятому в СССР для определения упругости паров бензинов и керосинов, отношение паровой фазы к жидкой 4 1. Упругость паров топлив [c.686]

    Сольватацией называется такое взаимодействие растворенного вещества с растворителем, которое приводит к более низкой активности растворителя вблизи частиц растворенного вещества по сравнению с чистым растворителем. В случае водных растворов сольватация называется гидратацией. Гидратация ионов обусловлена ориентацией дипольных молекул воды в электрическом поле иона, а гидратация полярных групп — в молекулах неэлектролитов и полимеров— ориентацией молекул воды в результате взаимодействия диполей и образования водородных связей. В гидратном слое молекулы воды располагаются более упорядоченным образом, но остаются химически неизмененными, чем гидратация отличается от химического соединения с водой окислов металлов и ангидридов кислот. Благодаря постепенному падению энергии связи растворенного вещества с растворителем (по мере удаления от молекулы растворенного вещества), сольватный слой имеет несколько диффузный характер, но в основном энергия взаимодействия и наибольшее падение активности растворителя сосредоточены в первом молекулярном слое. Растворитель в сольватной оболочке обладает, меньшей упругостью пара, меньшей растворяющей способностью, меньшей диэлектрической постоянной, меньшей сжимаемостью, он труднее вымораживается, обладает большей плотностью и т.,д. изменение любого из этих свойств раствора может быть использовано для определения величины сольватации. Наиболее прямой метод измерения сольватации состоит в установлении теплового эффекта поглощения навеской полимера определенного количества растворителя из смеси последнего с инертной к полимеру жидкостью например, Каргин и Папков определили, что сольватация нитроцеллюлозы в ацетоне и пиридине составляет около 1 молекулы растворителя на одну полярную группу — ОМОг полимера (табл. 15). Думанский и Некряч определили гидратацию ряда полимеров по теплоте смачивания (см. стр. 78), в частности, для крахмала найдено, что на глюкозный остаток приходится 3 молекулы связанной воды. Думанский установил также, что связывание воды самыми различными веществами происходит с тепловым [c.173]

    При применении метода газо-жидкостной хроматографии для решения некоторых научных задач нам пришлось учитывать все эти требования. Во многих случаях для наших целей оказался вполне пригоден хроматограф СКВ ИОХ АН СССР, который, например, был использован для анализа смесей различных изопреноидных соединений, некоторых продуктов диенового синтеза и др. Однако в отдельных случаях этот прибор не отвечал всем необходимым требованиям. Более универсальным оказался сконструированный нами прибор со стеклянным испарителем и колонкой, исключающими нежелательные химические изменения. Применение метода конверсии выходящих из колонки веществ до Нг (в токе N2) [1] или до СОа (в токе Не) [2] позволило повысить его чувствительность примерно в 10 раз. В приборе 5ыл применен изготовленный нами катарометр со стеклянными ячейкми, чувствительность которого по н. гексану составляла около 300 мв-мл/мг. Чувствительность всей детектирующей системы составляла примерно 3000—4000 мв-мл1мг. Помимо этих приборов, для анализа веществ с малой упругостью паров, или очень близких ио свойствам применялся хроматограф с микропламенным ионизационным детектором, имеющим чувствительность 3—5-10 мв-мл/мг, что примерно в 100 раз превышает чувствительность прибора с конверсией. Детектор очень прост по конструкции. Схема детектора приведена на рис. 1. Эти приборы позволили анализировать вещества различных классов с т. кип. 20—400° С с достаточно высокой точностью. [c.186]

    Значительное число мембран, используемых в качестве ультрафильтров, получают методом спонтанного студнеобразования. Как следует из рассмотренной выше диаграммы фазового равновесия (рис. 3.7), необходимым условием спонтанного студнеобразования является более высокая упругость паров растворителя по сравнению с упругостью паров нерастворителя. Факторами, определяющими структуру и свойства мембран, помимо химического состава полимера являются природа растворителя и нерастворителя, концентрация полимера в растворе, скорость испарения растворителя, температура, при которой происходит распад раствора на фазы. Закономерности процесса во многом сходны с закономерностями стадии предформования при получении мембран методом сухо-мокрого формования. Распад исходного раствора на фазы может быть зафиксирован по изменению оптической плотности системы [83]. Проведенные с помощью этого метода исследования показали, что кинетика спонтанного студнеобразования в системе ацетат целлюлозы — ацетон — вода существенно зависит от концентрации исходного раствора (рис. 3.14). На кинетику процесса оказывают влияние также молекулярная. масса полимера (рис. 3. 15), концентрация нерастворителя в системе (рис. 3. 16) и температура испарения (рис, 3.17). Обычно увеличению размера пор способствует снижение концент  [c.106]

    Совместимость зависит от природы полимера и пластификатора и м. б. охарактеризована диаграммой фазового состояния компонентов системы в координатах состав — темп-ра, давлением набухания полимера в пластификаторе или относительным понижением упругости пара над системой полимер — пластификатор, характером изменения темп-ры стеклования полимера при П. и рядом др. методов (см. Раствори, Совместимость). На практике широко применяют как хорошо совместимые, так и ограниченно совместимые с полимером пластификаторы, часто в смесях друг с другом. Если количество введенного пластификатора превышает концентрацию, соответствующую равновесному пределу его совместимости с полимером, избыток пластификатора может выделиться из системы при переработке, хранении и эксплуатации Л1атериала. [c.312]

    Все методы рекуперации, применяемые в промышленности, основаны на изменении (понижении) упругости насыщенного пара растворителя в жидкости (раствора) и над жидкостью (раствором). Они сводятся к созданию таких условий, при ко- торых равновесная парциальная упругость пара растворителя становится значительно ниже его упругости при данном содержании в 1воздухе, из которого растворитель извлекается. [c.7]

    В разделе, посвященном адсорбции на границе твердая фаза — газ, мы сразу встретились с трудностью определения ог ттным путем связи адсорбционных явлений с изменением поверхностного натяжения твердого тела. Однако имелись непрямые методы определения этого натяжения, например определение растворимости, упругости пара [уравнение В. Томсона (76), (78) и табл. 20]. [c.182]

    В физической химии И. и. используются для определе[1ия коэфф. активности, изучения диффузии и само-диффузии, определения упругости пара, растворимости, распределения вещества между фазами, выяснения механизма реакций, усовершенствования методов приготовления катализаторов и т. д. При изучении реакций, протекающих с образованием промежуточных веществ, предложен кинетич. изотопный метод, позволяющий устанавливать путем совместного решения уравнений кинетики процесса и изменения изотопного состава, генетич. взаимоотношения веществ, участвующих в сложных химич. реакциях. Во.зможности этого метода были проде.мопстрированы на примере изучения механизма окисления метана. При помощи С 0 было убедительно доказано существоиаиие активных центров на поверхности никелевого катализатора. Радиоактивные И. и. используются для определенин поверхности кристаллич. веществ путем изучения реакций гетерогенного обмена ионов между поверхностью и раствором. В этом случае получают значение активной поверхности, что более важно, чем оценка чисто геометрич. поверхности. Радиоактивный метод определения поверхности нашел нрименение при оценке активной поверхности катализаторов и цементов. [c.93]

    Обычно аллотропические переходы, как и все реакции между твердыми веществами, совершаются настолько медленно, что прямое калориметрическое определение их теплот невозможно. Большей частью пользуются косвенными методами (изменение теплоемкостей при переходе, измерение работы перехода и ее изменения с температурой посредством измерения растворимостей, упругостей пара, гальванических цепей и пр.> Пример вычисления теплоты алмаз — графит из теплот горения обеих модификаций был дан выите. [c.69]


Смотреть страницы где упоминается термин Метод изменения упругости пара: [c.151]    [c.365]    [c.274]    [c.173]    [c.420]    [c.594]    [c.31]   
Химия координационных соединений (1985) -- [ c.298 ]




ПОИСК





Смотрите так же термины и статьи:

Упругость пара

Упругость паров



© 2025 chem21.info Реклама на сайте