Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферменты денатурация

    Не всегда экспериментальные данные можно получить в достаточно широком интервале температур, так как скорость может быть слишком медленной при низких температурах, а при температурах выше 40—55° лимитирующим фактором может стать денатурация фермента. [c.564]

    Кинетика денатурации пепсина. Условия опыта 15° С, pH 6,9 (фосфатный буфер) концентрация фермента 5 мг/мл [c.24]


    При рассмотрении температурной зависимости жизненной кривой можно установить три температурные точки температурный минимум, оптимум и максимум. В границах температуры от минимума до оптимума интенсивность жизненного процесса растет, и здесь в основном наблюдается приблизительно такая же зависимость, как и в обычном химическом процессе. Температурный оптимум у животных колеблется в пределах 308...315 К (у растений он даже выше). Дальнейшее повышение температуры приводит к быстрому снижению процесса, и по достижении максимальной температуры наступает гибель, что связано с денатурацией белка и инактивацией ферментов. [c.130]

    Мы увидели, что белки тела, особенно ферменты, очень чувствительны к изменениям температуры, кислотности или концентраций посторонних веществ, таких, как ионы тяжелых металлов. Но кислоты и другие вещества непрерывно поступают в клетки и выводятся из нее. Как это может происходить без денатурации ее белков Это - тема следующего раздела. [c.458]

    Особое место занимают биокатализаторы - ферменты, представляющие собой белки. Ферменты оказывают влияние на скорости строго определенных реакций, т. е. обладают очень высокой селективностью. Ферменты ускоряют реакции в миллиарды и триллионы раз при комнатной температуре. При повышенной температуре они теряют свою активность, так как происходит денатурация белков. [c.44]

    При выделении фермента используют метод фракционирования белков путем изменения pH. Очистка фермента на этой стадии достигается за счет денатурации белков, которые отделяют центрифугированием. Изменение pH белкового раствора следует осуществлять осторожно, по возможности не использовать сильные кислоты и щелочи. Рекомендуется добавлять уксусную кислоту, трис-буфер, карбонат натрия и др. Добавление соответствующего буфера или кислоты проводят на холоде. Их вносят по каплям, по стенке сосуда, при постоянном перемешивании. После нейтрализации раствора проводят короткую инкубацию при 25—30° С, чтобы перед центрифугированием произошла полная агрегация денатурированных белков. [c.199]

    Большинство ферментов являются лабильными белками. При переводе их в экстракт они лишаются своего естественного (в клетке) окружения и легко подвергаются денатурации и инактивации под влиянием различных факторов. В связи с этим при выделении и очистке ферментов необходимо соблюдать целый ряд предосторожностей. Как правило, все операции следует проводить при 2—4° С (лучше — в холодной комнате), а фракционирование органическими растворителями — при температуре ниже О С. [c.196]


    Влияние внешних условий. По своей природе ферменты значительно более чувствительны к изменению внешних условий, чем неорганические катализаторы. В частности, ферменты работают в значительно более узком диапазоне температур. Температурный оптимум большинства растительных ферментов 313—333 К, животных ферментов 313—323 К. Если температура превысит эти пределы, активность фермента очень быстро падает, а при 343—353 К происходит пх необратимое разрушение, обусловленное денатурацией белка. Лишь очень немногие ферменты способны в определенных условиях выдержать нагревание до 373 К без потери активности. [c.169]

    В том случае, когда инактивация фермента происходит только в фермент-субстратном комплексе, т. е. когда субстрат вызывает денатурацию фермента, схему реакции следует записать в другом виде  [c.256]

    Вслед за денатурацией, обусловливающей потерю частицами гидрофильности, последние коа] улируют и оседают на дно сосуда. Например, при кипячении яичного белка он претерпевает необратимые денатурационные изменения, лишается водной оболочки, теряет растворимость. Меняются и другие его свойства. Денатурированный белок лучше переваривается ферментами желудочно-кишечного тракта человека, чем неизмененный (нативный). [c.184]

    СООН, N1 2, ЫН, ОН, 5Н, а также гидрофобные группы, способные ориентировать молекулы реагирующих веществ в определенном положении по отношению к активному центру. В состав активного центра многих ферментов входят ионы металлов, причем при удалении иона металла из металлофермента последний теряет каталитические свойства. Каталитическая активность ферментов имеет максимум на шкале pH, в сильнокислых и сильнощелочных средах она, как правило, не проявляется. Каталитическая активность ферментов наиболее оптимальна при температуре от 20 до 40° С, при 60 — 70° С происходит их денатурация. Активные центры имеют строго определенную структуру, что позволяет ферменту присоединять только молекулы определенного строения. Так, например, фермент уреаза гидролизует карбамид СО(NH2) в 10 раз быстрее, чем ион водорода, и не оказывает влияния на реакции гидролиза других родственных карбамиду соединений. В настоящее время известно около тысячи ( )ер-ментов, одни из которых катализируют только окислительно-восстановительные процессы, другие—реакции с переносом групп, третьи—реакции гидролиза и т. д. [c.184]

    Ферментативные реакции характеризуются также наличием колоколообразной зависимости скорости реакции от температуры в достаточно широком температурном интервале (что приводит к температурному оптимуму реакции). Эта особенность влияния температуры на кинетику ферментативных реакций объясняется наложением двух эффектов — возрастанием скорости реакции при увеличении температуры и ускорением тепловой денатурации белковой молекулы, приводящей к инактивации фермента при высоких температурах. Ясно, что при достаточно корректной постановке эксперимента оба эти явления можно изучать раздельно (см., например, 9 этой главы). [c.266]

    Осахаривающая способность амилазы солода, приготовленного из зерна различных культур (гидролиз 2%-ного раствора крахмала при pH 4,9 в течение 15 мин), по данным Хжоища, приведены на рнс. 64. Из него видно, что наряду с различием в осахаривающей способности разные солода имеют неодинаковый температурный оптимум, который у одних солодов (кукурузный, просяной, овсяной) приходится на одну строго определенную температуру, у других (ржаной, пшеничный, ячменный) — на некоторый интервал температур. Для всех солодов, за исключением овсяного, максимальная температура для действия амилазы не превышает 55Х, за ней наступает резкое снижение осахаривающей способности, а при 75—85°С— полное ее прекращение. Это объясняется тепловой денатурацией белковой молекулы фермента и связанной с ней потерей каталитической активности. [c.181]

    Если в ходе ферментативной реакции фермент денатурирует по первому порядку (с константой скорости денатурации/г), то дифференциальное уравнение скорости ферментативной реакции можно записать в виде [c.183]

    Ступенчатый характер тепловой денатурации лизоцима был также обнаружен в работе [72] при изучении оптической плотности растворов лизоцима в процессе его нагревания от 20 до 90° С наиболее выраженные изменения оптической плотности наблюдались около 50° и при 75—77° С [72, 73], что в целом согласуется с данными по ультразвуковой инактивации лизоцима (см. рис. 19). Тот факт, что в интервале температур 60—75° С наблюдается резкое уменьшение а-спиральности лизоцима (от 31 до 15%), также согласуется с наличием конформационного перехода лизоцима при 7ГС, обнаруженного с помощью ультразвуковой инактивации (см. рис. 19). Об этом же свидетельствуют и данные по изучению лизоцима, полученные методом дисперсии оптического вращения )[74, 75], по которым структурный переход фермента в нейтральной области pH происходит в температурном интервале 75—80° С. [c.162]


    Объясните каждый из следующих терминов а) фермент б) апофермент в) денатурация г) активный центр д) голофермент е) специфичность ж) пептидаза з) число оборотов. [c.467]

    Каталитическая активность ферментов проходит через максимум при изменении pH. В сильнокислых и сильнощелочных средах ферменты теряют каталитическую активность вследствие денатурации белка. В области 0-ь40 С скорости реакций, катализируемых ферментами, при повышении температуры возрастают в соответствии с уравнением Аррениуса. Энергия активации ферментативных реакций лежит в пределах 20 80 кДж/моль. При температурах 60—70 С белки денатурируются и полностью теряют каталитическую активность. [c.633]

    Обычно наблюдается линейная зависимость. Повышение температуры приводит к увеличению активности фермента, однако при 40—50°С достигается ее максимум. При дальнейшем увеличении температуры действие ферментов ослабляется, так как начинается их тепловая денатурация. [c.303]

    В работе [35] при изучении термической денатурации лизоцима методами дифференциальной сканирующей калориметрии нашли, что этот процесс происходит при 74 1°С (ДЯ=120 10 ккал/моль, А5 = 350 э. е.), что почти совпадает с данными для третьего конформационного перехода лизоцима (см. рис. 19), выявленного с помощью ультразвуковой инактивации (71° С, ДЯ=110 ккал/моль, А5 = 320 э. с.). Следует, однако, подчеркнуть, что методы оптического поглощения или дисперсии оптического вращения дают информацию о состоянии всей глобулы фермента в целом, в то время как метод ультразвуковой инактивации отражает конформационное состояние активного центра. В любом случае наличие целого ряда структурных переходов молекулы лизоцима и его активного центра при температурах выше 20° С показывает, что распространение выводов рентгеноструктурного анализа лизоцима, как и других методов структурного анализа фермента, на иные условия следует проводить с достаточной осторожностью. [c.162]

    Денатурация является сложным и еще недостаточно изученным физико-химическим процессом. Денатурация сложной коллоидной молекулы белка не предусматривает глубоких нарушений ее структуры, как-то разрыва пептидной связи — СО — МН—, освобождения отдельных аминокислот, разрушения полипептидной цепочки первичной структуры белка и др., что может происходить при гидролизе ферментами, сильными кислотами, щелочами и др. [c.208]

    Явления обратимой денатурации белков протекают и в живом организме возможно, что с этими процессами Рис. 92. Изменение формы полипептидной связано взаимное превраще-цепи при переходе белка из нативного нце активных и неактивных (а) состояния через промежуточное (б) форм ферментов И соответ-к денатурированной форме (в) вующих гормонов, а так- [c.212]

    Ферменты значительно более чувствительны к внешним условиям и их изменению, чем неорганические катализаторы. Они проявляют свою активность в строго определенном интервале значений pH среды изменение pH сразу же вызывает уменьшение активности фермента. Очень чувствительны ферменты и к изменению температуры. Для каждого вида ферментов суш,ествует определенная оптимальная температура, при которой он проявляет максимальную активность. Обычно она лежит в пределах 40— 60 С. Повышение температуры выше 70—80°С может привести к полной инактивации фермента вследствие денатурации белка. Неорганические катализаторы активны при температурах в несколько сот градусов Цельсия. [c.112]

    При выделении фермента на разных стадиях его очистки требуется интенсивное перемешивание раствора. Чтобы предотвратить сильное вспенивание и возможность денатурации фермента на поверхности раздела, используют различные типы мешалок. Целесообразно использовать мешалки с большими лопастями, что дает возможность, не снижая эффективности перемешивания, снизить скорость их вращения. Лопасти мешалки должны быть как можно глубже погружены в перемешиваемый раствор. При работе с небольшими объемами удобно использовать магнитные мешалки. [c.197]

    Ферменты — глобулярные белки и их каталитическая, активность определяется трехмерной структурой. При денатурации фермента в результате нагревания, изменения pH или даже ультрафиолетового облучения фермент теряет каталитическую активность и не может больше выполнять свои функции. [c.732]

    Палиндромы в ДНК обнаруживаются путем кратковременной ренатурации денатурированной ДНК, гидролиза всей не успевшей ренатурировать ДНК нуклеазой S1 (специфической для однонитевой ДНК) и задержания на колонке оксиапатита двунитевых фрагментов, которые в этих условиях образуют только палиндромы. Лин и Ли [Lin, Lee, 1979] вели денатурацию фрагментированной ультразвуком ДНК в щелочной среде, а ренатурацию — путем быстрой нейтрализации раствора и выдерживания его при повышенной температуре в течение 2 с. Затем раствор энергично охлаждали до 4° и диализовали на холоду против 0,1 М Na-ацетатного б фера (pH 5), содержавшего 0,1 мМ ацетата цинка, что необходимо для действия нуклеазы S1. Кроме того, к раствору добавляли половинный объем диоксана, который, как оказалось, почти втрое ускоряет и повышает эффективность действия фермента. Наконец, вносили саму нуклеазу 81 (80 ед/мл), выдерживали 45 мин при 37°, а затем, как обычно, гидролизат переводили диализом в 0,12 М Na-фосфат- [c.242]

    В некоторых случаях более эффективным оказывается фильтрование под вакуумом. Однако важно, чтобы при этом не происходило вспенивание раствора, так как оно может привести к денатурации фермента. [c.197]

    Большая группа экспериментальных данных свидетельствует о том, что конформация молекулы лизоцима и ориентация функциональных групп его активного центра сходны, возможно идентичны, в кристалле и в растворе. К ним относятся, например, результаты сравнительного изучения денатурации растворимого и кристаллического (тетрагонального) лизоцима нод действием температуры и денатурируюпщх агентов с номон ью дифференциальной сканирующей калориметрии [35]. В этой работе было показано, что термодинамические параметры тепловой денатурации фермента и температура денатурацнп близки для фермента в кристалле и растворе. Далее, денатурирующее влияние алифатических спиртов также оказалось одинаковым по отношению к лизоциму в двух физических состояниях, и анализ данных показал, что конформация молекул лизоцима в растворе или кристалле одинаково зависит от гидрофобных взаимодействий с раствори- [c.155]

    Температура денатурации разных белков неодинакова. Используя даже сравнительно мягкие условия нагревания, можно добиться коагуляции значительной части балластных белков без существенной инактивации выделяемого фермента. [c.199]

    Скорость ферментативной реакции повышается в 1,5—2,2 раза с повыщением температуры на 10° С. Поэтому такого понятия, как температурный оптимум активности , не существует. Вместе с тем в условиях эксперимента существует определенное значение температуры, при котором активность фермента максимальна дальнейшее увеличение температуры приводит к снижению скорости реакции. Следует иметь в виду, что это происходит в результате денатурации части фермента. Чем короче время инкубации, тем выше кажущийся температурный оптимум. На рис. 32 видно, что при времени реакции 1 активность максимальна при 70° С, а при времени /2 — при 50° С. Оптимальная температура действия фермента зависит от соотношения между влиянием температуры на скорость ферментативной реакции, с одной стороны, и на скорость денатурации фермента - с другой. [c.211]

    Для получения растворимых денатурированных субъединиц апо-фермент глицеральдегид-З-фосфатдегидрогеназы из дрожжей в концентрации 2,5—3,5 мг/мл инкубируют в течение 1 ч в 8 М растворе мочевины (за полнотой денатурации следят по изменению активности фермента). Полностью денатурированные субъединицы добавляют к суспензии иммобилизованных мономеров в 8-кратном избытке по отношению к связанному с сефарозой белку. Эту процедуру проводят трижды с 30-минутными интервалами между добавками при постоянном перемешивании и температуре 25° С. Несвязавшийся белок отмывают 0,1 М Ма-фосфатом. Определяют содержание белка и активность в препарате после реассоциации. [c.303]

    Подобные копформациоиные переходы лизоцима обнаружены также в ряде работ другими методами. Так, в работе [157] показано, что обратимый конформационный переход лизоцима в щелочной области pH контролируется ионогенной группой с рК 9,9. В работе [158] было найдено, что прп низких значениях pH лизоцим претерпевает обратимую денатурацию, скорость которой зависит от иопизации карбоксильных групп свободного фермента с рК в области 1,4—1,8. По данным работ ([159, 160]) карбоксильная группа с аномально низким значением рК<С2 принадлежит остатку Asp 66 лизоцима, экранированному от внещней среды полипептидной цепью фермента и также проявляющему наимень-щую реакционную способность по отношению к мoдV фикaтopaм. [c.200]

    К физическим факторам могут быть отнесены температурный—нагревание растворов выше 50—60° С многократное чередование замораживания и оттаивания денатурация под высоким давлением в 1000 кг/см и выше так, напрнмер, ферменты трипсин и химотрипсин при pH 5,0—5,2 под воздействием давления 7750 кг см через 5 мин инактивируются на 50% денатурация при воздействии ультразвуковых волн связана с разворачиванием молекул, а при более сильном воздействии ультразвука происходит даже paзpyшefIi e ковалентных связей при образовании мономолекулярных пленок на поверхности белковых растворов наблюдается так называемая поверхностная денатурация белка ультрафиолетовые лучи и ионизирующая радиация вызывают химические говреждеиия белковой молекулы, разрушая водородные связи, окисляя дисульфидные группировки, обусловливают исчезновение нативных третичных и вторичных структур белка. Интересными также являются наблюдения, указывающие на процессы денатурации, происходящие при старении белков. [c.209]

    Биологическая активность белков нередко тесно связана с высокой организацией структуры, и живые организмы синтезируют белки требуемой конформации, которая часто оказывается метастабильной (т. е. из всех возможных структур не самой устойчивой). Под влиянием нагревания, крайних значений pH или многих химических реагентов белки часто теряют свою биологически необходимую конформацию, превращаясь в случайные неорганизованные структурные единицы и утрачивая биологическую активность. Такой процесс называется денатурацией. Наиболее известный пример — изменение структуры яичного белка при нагревании и структуры мяса в процессе приготовления. В последнем случае кулинарная обработка приводит к значительному облегчению процесса переваривания мяса, поскольку при денатурации освобождаются белковые связи, которые в сыром мясе труднодоступны для протеолити-ческих ферментов пищеварительного тракта. При такой денатурации в результате развертывания белковых цепей обнажаются гидрофобные группы, в обычном состоянии направленные внутрь центральной части белковой молекулы. Взаимодействие освобожденных гидрофобных участков рядом расположенных молекул вызывает коагуляцию денатурированного белка. [c.303]

    Из амилолитических ферментов, например, а-амилаза активируется ионами кальция, который способствует сохранению нужной конформации и повышению стабильности третичной структуры макромолекул фермента к денатурации и действию иептидгндролаз. На плесневые а-амилазы стабилизирующее действие оказывают ионы алюминия. Все а-амилазы инактивируются ионами металлов ртути, меди, серебра и ионами галоидов — хлора, брома, фтора и йода. [c.121]

    Биологическая активность фермента в ходе хроматографии может измениться (как уменьшиться, так иногда в возрасти) в силу ряда дополнительных причин. Например, кажущееся увеличение активности фермента может быть результатом его отделения от протеаз. Снизиться активность может как в результате истинной денатурации илп окисления 8Н-групп белка, так и при отделении апофермепта от кофакторов. Иногда инактивация обусловлена разъединением двух или нескольких последовательно работающих ферментов. Такого рода кажущиеся инактивации могут быть обнаружены при объединении хроматографических фракций, когда активность фермента восстанавливается. Для сохранения биологической активности липофильных белков мембран в элюент иногда приходится добавлять спирт или ацетон. При этом может возникнуть определенная неравномерность распределения органического растворителя между жидкостью внутри и снаружи гранул — ионы сорбента, гидратируясь, оттягивают на себя воду. Следствие этой неравномерности — наложение на ионный обмен эффекта распределетельной хроматографии. Для сохранения биологической активности ферментов в элюент часто добавляют глицерин (до 25%) или этиленгликоль (до 5%). [c.292]

    Суспензию сефарозы с иммобилизованной дегидрогеназой промывают 10-кратным объемом раствора мочевины, смешивают с 4-кратным объемом раствора мочевины той же концентрации и инкубируют суспензию при перемешивании. За ходом инактивации следят, измеряя активность фермента на носителе. Через каждые 10 мин из инкуба-ционной смеси отбирают аликвоты препарата дегидрогеназы и без отмывания геля от мочевины вносят их в стандартную систему для определения активности. Реакцию начинают добавлением субстрата через 10 с после внесения суспензии сефарозы. Исследуют влияние концентрации мочевины на процесс инактивации фермента. Оптимальной концентрацией мочевины является такая, которая позволяет провести денатурацию 3 из 4 субъединиц дегидрогеназы и перевести эти субъединицы в раствор. Подбирая концентрацию мочевины, следует получить такую зависимость инактивации фермента от времени, на которой будет выраженное плато на уровне 25% от исходной активности. При определении белка и активности на разных стадиях денатурации можно показать, что в начале плато в связанном с матрицей состояний находится димер дегидрогеназы, сохраняющий 50% от исходной удельной активности. При сохранении в процессе инкубации активности такого димера происходит постепенное отщепление неактивной субъ- [c.302]

    Эффективность низкотемпературной стирки повышается введением в С.м. с. ферментов-щелочной протеазы или протеазы в сочетании с амилазой. Ведутся поиски экономически доступных способов получения и введения в С. м. с. липаз, расщепляющих жировые загрязнения. Для порошкообразных С. м. с. разработаны стабилизир. непылящие товарные формы ферментов, к-рые вводят в порошки сухим смешением в виде гранул, агломератов или р-римых в воде капсул. Введение ферментов в жидкие С. м. с. встречает затруднения, обусловленные денатурацией и постепенной утратой их активности. [c.354]

    Ферментативные р-ции чувствительны к внеш. условиям, в частности к ионной силе р-ра и pH среды. Влияние т-ры на скорость ферментативной р-ции описывается кривой с максимумом, восходящая ветвь к-рой отражает обычную для хим. р-ций зависимость, выраженную ур-нием Аррениуса. Нисходящая ветвь связана с тепловой денатурацией фммента. Максимум кривой соответствует оптимальной т-ре 7 , значение к-рой для большинства ферментов лежит в пределах 40-50 С. Для нек-рых ферментов, особенно фотмеитов термофильных микроорганизмов, 80-90 °С. Подробнее о кинетике ферментативных р-ций см. Ферментативных реакций кинетика. [c.81]


Смотреть страницы где упоминается термин Ферменты денатурация: [c.45]    [c.309]    [c.347]    [c.347]    [c.176]    [c.346]    [c.478]    [c.243]    [c.300]    [c.593]   
Основы органической химии 2 Издание 2 (1978) -- [ c.128 ]

Химия и биология белков (1953) -- [ c.273 ]

Основы органической химии Ч 2 (1968) -- [ c.82 ]




ПОИСК





Смотрите так же термины и статьи:

Денатурация



© 2025 chem21.info Реклама на сайте