Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энтропия изменение при смешении или растворений

    В общих чертах растворение полимеров напоминает взаимное растворение двух жидкостей и поэтому термодинамика этих процессов сходна (см. разд. IV.8). Здесь так же можно выделить теплоту и энтропию сольватации, теплоту и энтропию фазового превращения и энтропию смешения. В соответствии с этим, теплота И энтропия растворения полимеров в целом определяется суммой соответствующих изменений этих функций  [c.297]


    Как известно, идеальные растворы, т. е. растворы, образующиеся без изменения энтальпии, энтропия которых равна энтропии смешения идеальных растворов, подчиняются закону Рауля, определяющему ряд важных свойств растворов в зависимости от содержания в них растворенного вещества. Если растворенное вещество нелетуче, т. е. если давление его паров практически равно [c.451]

    Вычисление энтропии смешения но уравнению (1) показало, что при растворении полиизобутилена в изооктане величина энтропии смешения значительно превосходит значение идеальной энтропии смешения. Это свидетельствует о том, что д.пинные цепи, даже сохраняя свою степень гибкости, могут в фазе раствора располагаться значительно большим числом способов, чем в фазе чистого полимера. Но принять болыпое число конфигураций могут только гибкие цепи, поэтому резкое увеличение энтропии при растворении свидетельствует о гибкости цепей полимера. Н есткая jj,enb не может принять большого числа конфигураций, следовательно, и изменение энтропии, сопровождающее процесс растворения жесткого полимера, не может быть очепь велико. В ряде работ было показано, что при набухании таких жестких полимеров, как целлюлоза, агар-агар и другие, энтропия не только не увеличивается, по уменьшается [3]. Следовательно, величина и знак энтропии смешения в процессе растворения полимеров могут служить мерой оценки степени гибкости цепей полимера. [c.262]

    Как известно, мольная энтропия смешения двух веществ для идеальней системы или изменение энтропии системы При растворении некоторого количества вещества в данном объеме растворителя находится из следующего термодинамического уравнения  [c.439]

    Однако это общее правило, справедливое более или менее при растворении низкомолекулярных веществ, не всегда оправдывается при растворении полимеров. Такой принцип подбора растворителей основан на учете сил взаимодействия между молекулами смешивающихся компонентов. Однако известно, что смешение жидкостей обусловливается как силами взаимодействия, приводящими к энергетическим изменениям системы, так и силами диффузии, выражающимися в изменении энтропии при смешении. [c.181]

    Свойства идеальных растворов, подобно свойствам смесей идеальных газов, не зависят от природы растворенного вещества, а определяются лишь концентрацией. Следовательно, единственной причиной их образования (как и образования газообразных смесей) является возрастание энтропии при смешении. Таким образом, даже для идеального раствора Д5р 0 (так как растворение связано с изменением термодинамической вероятности для любого раствора). Однако Д5р в этом случае не будет зависеть от природы компонентов, а однозначно определится их соотношением (молярными долями). [c.167]


    Как известно, процесс растворения веществ друг в Друге (смешение компонентов) сопровождается изменением свободной энергии системы АР. При этом лишь в том случае, когда АР смешения отрицательна, т. е. АР = АН — ГА5 < О, имеет место самопроизвольное растворение (АН и А5 — соответственно, изменение энтропии и энтальпии системы). [c.33]

    Первые работы Дж. Гильдебранда связаны с обоснованием закономерностей идеальных растворов. Им показано, что если при образовании раствора теплота растворения кристаллов соответствует скрытой теплоте плавления и растворы образуются без изменения суммы объемов, растворы следуют закону Рауля [61]. Рассматривая механизм внутримолекулярного взаимодействия в растворе, Дж. Гильдебранд ввел понятие о внутреннем давлении. Жидкости с равными внутренними давлениями образуют идеальный раствор. Жидкости с близкими внутренними давлениями и близкой полярностью взаимно растворимы в широком диапазоне концентраций. Для оценки энергии связи сил межмолекулярного взаимодействия им использованы величины скрытой теплоты испарения. Растворы с дисперсионными силами взаимодействия, у которых теплоты, смешения имеют низкие значения, а изменение энтропии происходит по закону идеальных газов, были выделены в отдельный класс, полу- [c.213]

    Рассмотренный вариант решеточной теории учитывает лишь изменение энтропии при смешении молекул различных размеров. На практике растворение экстрагента или экстрагируемого комплекса обычно сопровождается тепловым эффектом. В рамках решеточной теории тепловой эффект объясняется различием в энергиях взаимодействия разных контактирующих групп, что учитывается с помощью энергии взаимообмена. Существует несколько вариантов решеточной теории, однако в любом из них потенциальная энергия системы рассматривается как сумма энергией взаимо- [c.35]

    Растворение пластификаторов в полимерах чаще всего подчиняется общим закономерностям, действительным для смешивающихся жидкостей. Эти закономерности определяются как силами взаимодействия между молекулами пластификатора и полимера, приводящими к энергетическим изменениям системы, так и силами диффузии, выражающимися в изменении энтропии при смешении. [c.142]

    Изменение теплосодержания АЯ и энтропии Л5 при растворении полимеров или разбавлении их растворов сами по себе не определяют направления самопроизвольного процесса при смешении полимера с растворителем. Для этого необходимо определить изменение термодинамического потенциала системы AZ, который связан с изменениями АЯ и AS уравнением (VHI. 1) в системе могут самопроизвольно происходить лишь те процессы, для которых AZ<0. [c.160]

    Следовательно, даже в случае растворения жестких цеп-пых молекул в низкомолекулярном растворителе, изменение энтропии при смешении будет больше, чем дает формула (6). [c.148]

    Качественная характеристика зависимостей термодинамических функций от состава в системах с водородными связями может быть дана на основании того, что знак и величина функций смешения в большой степени определяются изменением числа водородных связей в растворе по сравнению с чистыми компонентами. Так, для систем с ассоциацией одного из компонентов (например, система спирт — углеводород) характерен эндотермический эффект смешения растворение ассоциированного вещества в инертном растворителе сопровождается разрывом большого числа водородных связей. Если в чистых жидкостях ассоциация отсутствует, а в растворе образуется сольват (классический пример — система ацетон —хлороформ), то энтальпия смешения отрицательна (тепловой эффект экзотермический) избыточная энтропия обычно также отрицательна. Когда оба компонента в чистом состоянии ассоциированы, концентрационная зависимость термодинамических функций носит сложный характер, кривые (ж), 5 (дс) часто имеют 5-образную форму (при изменении концентрации раствора знак избыточной функции меняется). Пример таких систем— водные растворы спиртов, кетонов и др. [c.457]

    Ограниченная растворимость жидкостей в жидкостях может быть результатом неблагоприятной теплоты смешения или большого отрицательного значения изменения энтропии, характеризующего процесс растворения. Гораздо чаще встречается первый случай. При этом возникает вопрос, при каком значении АН в бинарной системе будут сосуществовать две жидкие фазы. Гильдебранд и Скотт [45] рассмотрели эту проблему для регулярного раствора, в котором молярные объемы двух компонентов подобны. Можно ожидать, что для такого раствора теплота смешения будет пропорциональна произведению концентраций двух компонентов, и, следовательно, для 1 моля [c.51]

    Самопроизвольное растворение, как всякий самопроизвольный процесс, должно сопровождаться уменьшением термодинамического потенциала, которое зависит по уравнению (VI, 14) и от изменения теплосодержания и от изменения энтропии при смешении. Физический смысл уравнения (VI, 14) Д0=ДЯ—Гд5 состоит в том, что растворение обусловлено как межмолекуляр-ными силами взаимодействия, так и изменением энтропии, т. е. чисто диффузионным проникновением молекул одного сорта в среду молекул другого сорта. [c.97]


    Растворение неполярного поли-и.то-бутилена в неполярном же изо-октане идет только вследствие повышения энтропии без выделения тепла, т. е. смешение имеет здесь изотермический характер. Существенно, что при растворении поли-г(зо-бутилена в изо-октане, гидрированном димере зо-бутилена, энергетический барьер при враш,ении отдельных звеньев цепи молекулы не изменяется, так как действие межмолекулярных сил в растворе такое же, что и в самом поли-и.эо-бутилене. Иными словами, растворение в этом случае происходит без изменения гибкости макромолекул. [c.442]

    Определение теплоты смешения полимеров. При смешении двух полимеров, имеющих близкие значения молекулярных весов и примерно одинаковую гибкость молекулярных цепей, в эквимолекулярных количествах изменение энтропии невелико. Различия в изменении свободной энергии при смешении разных полим ов связано преимущественно с различиями в теплотах смешения. Теплота смешения может быть рассчитана по закону Гесса из экспериментально найденной теплоты растворения исходных полимеров и их смесей. Для нахождения теплоты растворения требуются калориметры большой точности. Г. Л. Слонимский и Г. В. Стру-минский измерили теплоты растворения различных полимеров и рассчитали интегральные теплоты смешения . [c.13]

    В зависимости от того, как меняются те или иные термодинамические функции при образовании раствора, растворы полимеров делятся на идеальные и реальные. Образование идеального раствора происходит без изменения энтальпии АЯ = 0, изменение энтропии при смешении А5ги = —ШпА и где N1 — мольная доля растворенного вещества. Идеальные растворы образуются при с.мешении веществ, близких по своему химическому строению и размерам молекул. В этом случае энергии взаимодействия однородных и разнородных. молекул близки. При образовании идеального раствора из.менения объе.ма также не происходит АУ=0. [c.150]

    Резюмируя все сказанное, мы видим, что растворимость аморфных полимеров в низкомолекулярных жидкостях или, что тоже, совместимость их с пластификаторами, определяется изменением свободной энергии, т. е. соотношением между изменением внутренней энергии и энтропии при смешении. При этом если гибкость полимерных молекул меняется при растворении, то ожестчение молекул может приводить к резкому уменьшению энтропии смешения, а их размягчение — к увеличению энтропии смешения. Это влияние взаимодействия между полимером и растворителем на гибкость цепных молекул вносит чрезвычайно богатое разнообразие в свойства растворов полимеров и нарушает связь между растворимостью низкомолекулярных и высокомолекулярных полимергомологов. Единственное, что можно утверждать, это то, что если мономер не растворяется, то полимер наверное не растворится. [c.150]

    Существенное значение для понимания состояния и характера взаимодействия воды с полимерами имеет информация об абсолютных значениях термодинамических параметров взаимодействия (смешения) компонентов и их изменение с изменением состава системы. Из общих соображений очевидно [16, 133], что значения энтальпии (ДЯ) и энтропии (Д5) смешения при различных р1рв указывают на характер взаимодействия сорбата и сорбента, структуру раствора. В частности, по их соотношению можно судить, является ли распределение молекул и сегментов в растворе статистическим (высокие А5, малые АН), либо оно определяется преимущественно локализацией молекул сорбата в пространстве — высокие значения ДЯ, связанные с энергетическим взаимодействием меж ду молекулами сорбата и активными группами сорбента [133]. Обычно при термодинамическом анализе процессов сорбции паров и газов, в том числе воды, в полимерах выделяют стадию конденсации низкомолекулярного компонента и стадию растворения сконденсировавшегося компонента в полимере. Это позволяет АН представить как сумму теплот конденсации ДЯ и смешения (растворения) ДЯр [c.222]

    При уменьшении концентрации получаемого раствора, повышении молекулярной массы растворяемого полимера энтропия смешения оказывается еще более низкой. Для жесткоцепных полимеров, макромолекулы которых способны принимать ограниченное число конформаций, изменение энтропии при смешении практически оказывается равным нулю. В этом случае величина и знак AG определяются только энтальпией смешения и возможны только процессы растворения, протекающие с выделением тепла. При растворении полимеров с достаточно гибкими макромолекулами комбинаториальная энтропия смешения повышается за счет большого числа конформаций, которые полимерные цепи могут [c.73]

    Термодинамически самопроизвольное растворение высокомолекулярных соединений сопровождается уменьшением энергии Гиббса (AG = АН — TAS < 0). Энтальпия смешения АН отражает энергетические изменения при взаимодёйствии молекул полимера и растворителя, энтропия смешения AS— изменения во взаимном расположении макромолекул и их конформациях. При растворении полимеров с гибкими цепями выделение теплоты обычно невелико (АН 0), но при растворении существенно возрастает энтропия системы (AS >0). При растворении полимеров с жесткими, обычно полярными, цепями число возможных конформаций в растворе резко уменьшается и величины энтропии смешения очень невелики. Одновременно для этих полимеров возрастает выделение теплоты. [c.439]

    Однако на самом деле при растворении полимера обычно АЯсм =0 и АУсмт О. В свою очередь, наличие взаимодействия между компонентами приводит к их взаимной координации, и энтропия смешения в такой системе отличается от А5см, комб. Для получения выражения для изменения энергии Гиббса при образовании реального раствора полимера, т. е. с учетом указанных факторов, используют выражение для АО см атермического раствора, в которое вводят дополнительный член, содержащий некоторый безразмерный параметр [c.85]

    Совместимость свойства. Ко шлекс физ.-мех. св-в С.н. определяется прежде всего тем, совместимы (т.е. взаимно р-римы) или несовместимы смешиваемые полимеры. Взаимная р-римость олигомеров резко уменьшается с увеличением мол. массы и для полимеров составляет доли процента или неск. процентов. Причины преобладающей взаимной нерастворимости полимеров заключаются в следующем при смешении большинства пар полимеров изменение энтальпии мало и положительно (эндотермич. смешение) изменение энтропии также невелико, а могда и отрицательно, в то время как при смешении низкомол. в-в энтропия существешо возрастает. Поэтому самопроизвольное взашьшое растворение подавляющего большинства полимеров невозможно, т.е. полимеры, как правило, несовместимы (по термодинамич. причинам). Фазовые диаграммы С. п. могут иметь либо верхнюю, либо нижнюю критич. т-ру смешения, однако взаимная р-римость полимеров обычно мало зависит от т-ры, т. к. ветви бинодали практически параллельны оси ординат (см., напр., рис.). [c.370]

    В отличие от лиофобных золей, растворы высокомолекулярных веществ являются термодинамически устойчивыми обратимыми истинными растворами. Они подчиняются правилу фаз и их устойчивость определяется соотношением энергетического (ДЯ) и энтропийного (ТД5) членов в уравнении (VIII. 1). Для растворов полярных полимеров, обычно обладающих жесткими цепями, основное значение имеют изменения ДЯ, в значительной мере зависящие от сольватации. Тепловые эффекты, изменения упругости пара, сжимаемости и других свойств растворов при сольватации указывают, что наиболее прочно связанная часть растворителя составляет около одного слоя молекул вокруг полярных групп полимера (табл. 15). Для растворов неполярных полимеров с гибкими цепями основное значение имеют изменения энтропии смешения, во много раз превышающие идеальные значения, и непосредственно связанные с гибкостью макромолекул в растворах. Различные соотношения ДЯ и Д5, приводящие к возможности самопроизвольного растворения полимеров (Д2<0) приведены в табл. 16. Нарушение устойчивости растворов полимеров при понижении температуры, добавлении нерастворяющей жидкости или высоких концентраций солей приводит к различным случаям расслоения на две фазы, выпадения полимеров, высаливания белков и др. Зависимость растворимости полимеров от молекулярного [c.196]

    Ограниченное набухание может также иметь место при химической модификации полимеров, которые сами по себе способны к неограниченному набуханию. Например, натуральный каучук может набухать в бензине до полного растворения, однако, после вулканизации, когда его молекулы химически связаны некоторым количеством атомов серы и образуют прочную пространственную сетку, набухание становится ограниченным аналогично, задубленный студень желатины даже при нагревании остается в ограни-ченко-набухшем состоянии. В этом случае равновесие при ограниченном набухании имеет вынужденный характер. Отрезки цепей между узлами пространственной сетки выпрямляются при набухании, вследствие увеличения расстояний между этими узлами, но в то же время они отходят от своего наиболее вероятного свернутого состояния (см. стр. 188), поэтому при деформации энтропия цепей уменьшается (A5og <0). С другой стороны, энтропия смешения полимера и растворителя при набухании возрастает (см. стр. 176). Оэотношение этих противоположных процессов изменения энтропии определяет напряжение в полимерной сетке, ограничивающее степень набухания (Флори и Ренер). [c.202]

    В результате смешения полимеров обычно не возникает никаких новых конформаций макромолекул, так как при этом не появляется маловязкая прослойка ( свободный объем) между цепями и, следовательно, не устраняются пространственные препятствия. Поэтому одпадает слагаемое энтропии, Рис. 156. Изменение раствори обусловленное изменением гибкости мости полистирола (в граммах цепи при растворении полимеров в низ-иа 100 г второго полимера) в комолекулярных пластификаторах. Мо- [c.516]

    Самый серьезный недостаток зрой тео рин авторы обзора видят в том, что она пренебрегает эффектом изменения объема ири смешении полимера с. растворителем. Одно из допущений теории Хаггинса — Флори заключается в принятии иостояиства положения молекул компонентов. Соответственно ио этой теории за счет простого обмена местами разноименных молекул энтропия молсет только возрастать, в то время как ири растворении нолимера ироисходит сжатие системы и, следовательно, энтропия уменьшается. [c.64]

    При образовании твердых растворов обычно происходит деформационное искажение кристаллической решетки, обусловленное различием в размерах атомов растворителя и растворенного вещества. Это должно приводить к возрастанию внутренней энергии системы U (или энтальпии Н — I/ + pV), т.е. процесс образования твердых растворов должен быть эндотермическим (ДЯдеформ > 0). С другой стороны, перекрывание электронных орбиталей компонентов при образовании твердых растворов приводит к возникновению химических связей между ними, что связано с уменьшением энтальпии (А Ясв < 0). В результате суммарное изменение энтальпии при образовании твердых растворов АН = - А Нсв + А Ядеформ может быть как положительным, так и отрицательным. Термодинамически образование твердого раствора будет возможно, если изменение свободной энергии AG = АН - TAS будет отрицательным. Если ДЯ < О, т.е. энергия химического взаимодействия преобладает над энергией деформации решетки, то всегда AG < О (так как А S при образовании всегда положительно вследствие возрастания неупорядоченности в системе). При ДЯ > О, (преобладание деформационного эффекта над химическим) возможность образования твердых растворов будет определяться соотношением между ДЯ и TAS. Изменение свободной энергии здесь будет отрицательным только тогда, когда TAS > АН. Вблизи чистых компонентов А и Б наблюдается очень резкое возрастание энтропии смешения ( А О, рис. 104). Таким образом, при малой концентрации растворенного вещества образование твердого раствора всегда термодинамически выгодно, поскольку в этих условиях TAS А Я независимо от абсолютной величины А Я. Отсюда следует, что абсолютно нерастворимых в твердом состоянии веществ в природе не существует, и возникновение ограниченных твердых растворов является общим случаем взаимодействия твердых тел. [c.201]


Смотреть страницы где упоминается термин Энтропия изменение при смешении или растворений: [c.233]    [c.83]    [c.430]    [c.233]    [c.148]    [c.92]    [c.215]    [c.349]    [c.201]    [c.399]    [c.494]    [c.401]    [c.220]    [c.399]   
Курс коллоидной химии (1976) -- [ c.439 ]




ПОИСК





Смотрите так же термины и статьи:

Изменение энтропии

Энтропия растворения

Энтропия смешения



© 2025 chem21.info Реклама на сайте