Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нефть построение цен

    На ранее построенных установках АТ и АВТ не было очистки компонентов светлых нефтепродуктов выщелачиванием, стабилизации бензиновых фракций, абсорбции газов и др. Для этих процессов сооружались самостоятельные установки на отдельной площадке. В результате усовершенствования технологии первичной переработки нефти и соответствующей аппаратуры, а также внедрения автоматизации начали сооружать на АТ или АВТ дополнительные блоки — электрообессоливания,-стабилизации бензиновых фракций, выщелачивания компонентов светлых нефтепродуктов, абсорбции и десорбции жирных газов. Таким образом, индивидуальные технологические установки соединились в комбинированные установки первичной переработки, называемые (независимо от числа технологических узлов и процессов) комбинированными атмосферно-вакуумными установками (ABT)j Объединенные в единую технологическую схему установки электрообессоливания, электрообезвоживания и атмосферно-вакуумной перегонки носят название ЭЛОУ —АВТ. Достоинство таких установок — более рациональное использование энергетических ресурсов АВТ. [c.24]


    Использование тепловой энергии горячих нефтепродуктов. На современных установках первичной перегонки нефти тепловая энергия горячих нефтепродуктов используется для предварительного подогрева нефти, промышленной теплофикационной и химически очищенной воды, для поддержания температуры быстрозасты-вающих продуктов, обогрева емкостей, трубопроводов, трубных лотков и др. На рис. 76 показана наиболее рациональная схема использования тепла горячих потоков для предварительного подогрева нефти на установке АВТ производительностью 2 млн. т/год. Такие установки имеются на многих отечественных нефтезаводах. Как видно из схемы, на установке в результате рационального использования вторичных энергоресурсов нефть предварительно подогревается с 10 до 234 °С. На более старых аналогичных установках нагрев нефти за счет тепла регенерируемых источников не превышает 160—170 °С. В результате теплообмена гудрон охлаждается до сравнительно низкой температуры, и для его доохлаждения до температуры хранения требуется значительно меньше воды, чем на ранее построенных установках АВТ. [c.213]

    При небольшом числе продуктов, получаемых при перегонке нефти, число точек для построения кривой ИТК по описанной выше методике будет также [c.27]

Рис. 1-30. График Эдмистера — Окамото для построения кривых ОИ остатков перегонки нефти при остаточном давлении 13,3 гПа по кривым ИТК Рис. 1-30. <a href="/info/34454">График Эдмистера</a> — Окамото для <a href="/info/33818">построения кривых</a> ОИ остатков <a href="/info/17734">перегонки нефти</a> при <a href="/info/384979">остаточном давлении</a> 13,3 гПа по кривым ИТК
    Ранее построенные установки первичной перегонки нефти рассчитывали для получения ограниченного количества нефтяных углеводородных фракций. В секции атмосферной перегонки нефти получали не более 3—4 светлых компонентов (бензин, лигроин, керосин и дизельные топлива), а в секции вакуумной перегонки мазута насчитывалось всего 2—3 масляных фракции и гудрон. Современные установки обеспечивают производство большого ассортимента нефтепродуктов. Так, при переработке наиболее распространенных нефтей (обессоленных) Ромашкинского и Туймазинского месторождений на установках АВТ можно получить до 12 различных компонентов (табл. 4). [c.26]

    В табл. 35 показано изменение поверхности нагрева печей в результате их реконструкции. Из приведенных данных видно, что на действующих установках АВТ поверхности нагрева в печах, используемых для подогрева нефти, значительно больше, чем предусматривается проектом. Это связано с повышением производительности установок и подачей в печь нефти с более низкой температурой, чем по проекту. Конвекционные трубы вакуумных печей используются в основном для нагрева отбензиненной нефти, как в ранее построенных установках имеется резерв нагревательных поверхностей. [c.188]


    Автоматизированные системы управления. Наибольшая безопасность технологических процессов достигается с помощью автоматизированных систем управления. Интенсификация и укрупнение единичных мощностей обусловливают разработку и внедрение автоматизированных систем централизованного контроля и управления. Одна из таких систем Нефть-1 , заменяющая традиционные приборные системы контроля и автоматики щитового исполнения, нашла в последние годы широкое применение для автоматизации непрерывных технологических процессов нефтеперерабатывающей промышленности. Популярность системы Нефть-1 обусловлена ростом требований к качеству и количеству представляемой технологическому персоналу информации о процессе и невозможностью их удовлетворения при применении щитовых систем, а также рядом особенностей, выгодно отличающих систему Нефть-1 от других систем — это компактность, агрегатный блочно-модульный принцип построения примененных технических средств, использование современных форм и методов представления информации о ходе технологического процесса и управления и т. д. [c.173]

    ТАБЛИЦА 3.1. Типовые установки по переработке нефти, построенные [c.66]

    На рис. 4 изображена кривая лабораторного окисления гудрона прямой гонки (полученного из смеси башкирских нефтей), построенная по данным табл. 1. Следует отметить, что перерыв в окислении на время анализов не отражается на ходе кривой, если во всех случаях соблюдаются одинаковые условия пуска. [c.286]

    Один подход представлен несколькими динамиками добычи нефти, получившими название Народнохозяйственные сценарии Народнохозяйственные сценарии отражают динамику общего уровня добычи нефти, построенную исходя из потребностей экономики страны в нефти и нефтепродук- [c.41]

    Данные для построения кривых ОИ нефтей и тяжелых остатков определяются обычно экспериментально, в то время как для различных топливных и масляных фракций они находятся большей частью на основе описанных ниже аналитических и графических методов расчета. [c.58]

    В 1952—1953 гг. на отечественных нефтеперерабатывающих заводах строились в основном атмосферно-вакуумные трубчатые установки производительностью 1,0 1,5 и 2,0 млн. т/год сернистой и малосернистой нефти (типовые установки А-12/1, А-12/2, А-12/1М, А-12/1,5, А-12/3). Установки АВТ, построенные по перечисленным проектам, принципиально являются комбинированными — в них технологически и энергетически связано несколько блоков и узлов. Основные технологические решения, принятые на первоначальных установках АВТ производительностью 1 млн. т/год нефти, сохранились и в последующих, более мощных установках. [c.82]

    С целью получения узких легкокипящих углеводородных фракций н. к. — 62, 62—85, 85—120, 120—140 °С в состав современных установок АВТ включается узел вторичной перегонки. В ранее построенных установках АВТ производительностью 1,0 1,5 и 2,0 млн. т/год нефти блоки вторичной перегонки бензина состоят из одной фракционирующей колонны, оборудованной 60 тарелками желобчатого типа. Недостающее тепло в колонну сообщается извне теплоносителем. Практика эксплуатации установок производительностью 1,0 млн. т/год нефти показала неудовлетворительную работу блока вторичной перегонки, состоящего из одной колонны. В связи с этим на всех установках была сооружена еще одна отпарная колонна для вывода из нее узкой фракции 85— 120 °С. Однако это мероприятие также не полностью устранило имевшиеся недостатки. [c.97]

    От четкости разделения нефти на заданные углеводородные фракции зависит эффективность последующих процессов и качество товарных нефтепродуктов. Опыт эксплуатации ряда атмосферных и атмосферно-вакуумных трубчаток показал, что не на всех установках достигается удовлетворительное фракционирование. Так, на установках АВТ, построенных в 1947—1955 гг., бензиновые фракции первой колонны получались утяжеленными, с к. к. до 200 °С, а отбензиненная нефть имела начало кипения 65—80°С, т. е. в ней оставалось значительное количество легких компонентов. Таким образом, налегание фракции составляло около 100°С. На этих установках с верха второй колонны предусматривалось получение фракции 85—130 °С, а в качестве боковых погонов — фракций 130—240, 240—300 и 300—350 °С. Фактически с верха колонны отбиралась широкая фракция 40—220 °С и затем один боковой погон — дизельное топливо. Б мазуте оставалось до 3% на нефть фракций дизельного топлива. [c.43]

    Стабилизация бензина. Все построенные за последние годы установки АВТ оборудованы блоком стабилизации бензинов. Установки, запроектированные институтом- Гипронефтезаводы , имеют депентанизатор, а в проектах Гипроазнефти стабилизация осуществляется в полной колонне. Обследование блока стабилизации установки АВТ при переработке арланской нефти показало следующее. Выход (в вес. % на нефть) нестабильный бензин — 5,6 стабильный бензин — 5,1 газ из сепаратора—0,2 рециркулят из сепаратора 0,28. В расчете на нефть выход общего газа составляет 1,49%, выход общего бензина 10,2%. Технологический режим стабилизатора следующий  [c.124]


    При построении карты прогноза состава нефтей с учетом выявленной закономерности экстраполировались направления изолиний плотности нефти, которые разграничивали зоны с разным их составом. Таким образом, граница прогнозируемых зон с нефтями разного состава на карте прогноза проводилась как с учетом имеющегося фактического материала, так и с учетом экстраполяции и расчетных данных. По фактическому материалу проводились границы зон с нефтями плотностью более 0,900 г/см и 0,900—0,850 г/см на востоке и юго-востоке, а граница (внутренняя - по направлению к центральной части впадины) зоны с нефтями плотностью 0,850-0,810 г/см - по расчетным данным (уравнения регрессии). На севере и северо-западе граница зоны с нефтями плотностью 0,850—0,810 г/см проводилась по фактическим данным. На юге и юго-западе внешняя граница (в направлении к бортовой зоне) проводилась по борту впадины, а внутренняя — с учетом распространения районов с вьюокими температурными градиентами. Изогипса плотности 0,810 г/см , по существу, служит границей между зонами распространенных нефтяных и газоконденсатных скоплений. Фактических данных для ее проведения мало, поэтому использовались расчеты состава нефтей, проводимые по уравнениям регрессии. Значимые коэффициенты кор- [c.166]

    Выделенные в процессе деасфальтизации концентраты асфальтенов и смол (табл. 1.10)являются агломератами наиболее высокомолекулярных соединений, составляющих основу для формирования ядер сложных структурных единиц в исходных остатках. Изучение их состава и свойств позволяет получить необходимые данные для построения общей модели основной структурной единицы нефтяных остатков различных нефтей с целью использования в последующем анализе результатов их превращений на поверхности полидисперсных катализаторов. [c.35]

    На установках АВТ потери делятся на производственные (или технологические) и энергетические. Производственные потери могут быть в результате испарения нефти и нефтепродуктов, механических утечек, смешения с другими продуктами на отдельных технологических узлах, утечек через горячие поверхности аппаратов, оборудования и коммуникаций, попадания нефтепродуктов в производственные или промышленные стоки. Чем больше производительность установок, тем больше производственные потери в абсолютных цифрах. В прежде построенных установках потери достигали 1,5—2 вес.% на перерабатываемую нефть. На установках производительностью 2,0 3,0 6,0 7,5 млн. т/год такие потери в абсолютных цифрах составят соответственно 30,0 45,0 90,0 и [c.227]

    Сложность построения единой классификации, которая заметно ощущается в ряде работ последних лет, приводит к мысли о том, что разрабатывать подобную классификацию нецелесообразно, так как невозможно выделить в системе единой классификации четкие критерии подразделения нефтей по тем или иным показателям, изменяющимся иногда в одном направлении под влиянием разных факторов. Более целесообразно использовать три классификации нефтей по химическому составу, по генетической принадлежности и по геохимическим превращениям (вторичным).  [c.8]

    Далее при построении разрывных решений задач фронтального вытеснения нефти раствором активной примеси требуем выполнения на скачках условий Гюгонио и условия устойчивости разрывных решений. [c.307]

    Таким образом, автомодельное решение задачи вытеснения нефти раствором активной примеси может состоять из простых j-волн (10.28), точек покоя, устойчивых 5-скачков (10.17), устойчивых с-скачков (10.16). Последовательность этих элементов на плоскости (s, f) будем называть путем . Путь начинается в точке = О (10.26) и заканчивается в точке С - 00 (10.25). Рещение задачи вытеснения сводится к построению пути, вдоль которого величина монотонно возрастает от нуля до бесконечности. [c.309]

    Карты геохимической характеристики нефтей и карты зональности в распределении нефтей разного состава и нефтяных и газоконденсатных залежей являются основой для построения карт прогноза состава УВ и их фазового состояния. На картах геохимической характеристики можно (и даже целесообразно) давать и дополнительную, отражающую специфические особенности нефтей того или иного горизонта, информацию. Целесообразно выделять районы высокосернистых и высокопарафинистых нефтей, а также месторождения, в нефтях которых обнаружено повышенное содержание ванадия, никеля и других микроэлементов, и участки, в пределах которых в данных отложениях встречены нефти другого генотипа. [c.159]

    Методика построения карт прогноза фазового состояния и состава углеводородных флюидов заключается в следующем. По данным карт изменения состава нефтей в пределах нефтегазоносного комплекса выделяют зоны с нефтями и газами разного состава. Границы этих зон наносят на карты прогноза. На основании корреляционного анализа выявляют связи между глубиной, температурой, давлением, с одной стороны, и свойствами и составом нефти, с другой, и отмечают глубинно-температурные интервалы изменения состава нефтей вплоть до их значительного катагенного превращения и перехода в конденсаты. На основании этих материалов коррелируются границы выявленных по геохимическим данным зон с разным фазовым состоянием УВ и составом нефтей. [c.161]

    Под потенциальным содержанием отдельных 4ракций в нефти понимают их выход в % (масс.) при перегонке нефти на АРН-2 по ГОСТ 11011 - 64 [19], или, что то же самое, по кривой ИТК нефти, построенной по данным такой перегонки. [c.205]

    Исходное вещество нефти необратимо в направлении от гетерогенных соединений частично к метановым и нафтеновым, и преимущественно к гибридным углеводородам нафтеново-ароматического тина. Если последние изменяются в направлении к нафтеновым и, наконец, к метановым углеводородам, то с этим процессом необходимым образом будет связано исчезновение гетерогенных соединений, накопление легких фракций нефти, метани-зад ия их, падение удельного вэса нефти в целом и т. д. Поэтому классификация нефтей, построенная на идее спонтанного превращения, охватывает все свойства нефти в ряде переходящих признаков. В соответствии с этим можно выделить несколько классов [c.30]

    На первом этапе следует определить поглощающую способность коллектора ПЗП, т.е. снять профиль приемистости скважины по всей перфорированной толщине пласта. В качестве закачиваемой жидкости следует использовать товарную нефть. Построение профиля приемистости позволит определить наличие и число наиболее проницаемых участков пласта. Эти участки необходимо будет заполнить наиболее вязкой ОКЭ. Для остальной части пласта эмульсия должна иметь вязкость в 2-3 раза ниже. При таком подходе продавить ОКЭ на заданную толщину можно равномерно, как в высоко-, так и низкопрони-цаемые участки пласта. Радиус проникновения ОКЭ теоретически не ограничен, а практически будет зависеть от давления продавки. Если ОКЭ продавливать при условии защиты обсадной колонны пакером, то давление продавки может быть доведено дс давления гидроразрыва. В этих условиях может быть закачано большое количество ОКЭ, и, следовательно, достигнут значительный радиус ее распространения. Если же ОКЭ закачивали без пакера, то радиус проникновения ОКЭ будет зависеть от приемистости пласта при давлении, допустимом для обсадной колонны. При повторных глубоких обработках пласта глубина проникновения ОКЭ будет увеличиваться. Глубокие обработки позволят не только интенсифицировать добычу нефти, но и увеличить коэффициент нефтеотдачи пласта. [c.212]

    Имеется кривая зависимости температуры начала однократного испарения нефти от давления (рис. 87). Способ построения такой кривой рассмотрен в главе VIII. [c.142]

    На рис. 2.5. представлены кривые распределения массовой доли различных углеводородных групп в составе сравнимаемых нефтей, построенные по данным рефрактометрического детектирования каждой из 50-60-ти узких хроматографических фракций этих нефтей. [c.74]

    Водные, главным образом морские, перевозки нефти начали интенсивно использовать после открытия богатейших залежей нефти на Ближнем Востоке, районами развитой нефтепереработки были в то время Северная Америка и Западная Европа. С тех пор этот вид транспорта нефти стал основным в международной торговле нефтью, и морские коммуникации, являющиеся международными артериями, достигли офомной протяженности (сотни тысяч километров). Соответственно возросла и фузоподъемность (водоизмещение) танкеров. Если первые из них строились водоизмещением 5-10 тыс. т, то в 70-е годы появились супертанкеры для перевозки 300-500 тыс. т нефти, построенные в Японии. [c.41]

    Делим кривую ИТК нефти на несколько узких фракций снимаем с графика разгонок нефти, построенного в мольных единицах (фиг. 4) значения средних параметров этих фракций-температур кипения и, молекулярных весов УИ и удельных весов Далее задаемся предполагаемым значением мольной степени отгона е, например, равным 0,62 и находим мольный состаб х жидкой фазы по уравнению (VI, 29) ОЙ многокомпонентной смеси. Подсчеты представлены в табл. 65. [c.333]

    Особо отметим, что при построении решения задачи о вытеснении нефти оторочкой раствора активной примеси были использованы только две кривые Бакли - Леверетта с = О и с = с , от промежуточных значений О < t < с решение задачи не зависит. Это позволяет существенно сократить объем экспериментов по определению исходной информации к конкретным технологическим расчетам необходимо измерять фазовые проницаемости и вязкость фаз только для значений с = О и с = с°, а также константы Генри Г и распределения примеси К. [c.314]

    Переходим к изложению разработанной нами системы геохимической типизации нефтей, построенной на основе характеристики их ди-Фтиллятных фракций с помощью структурных индексов. [c.20]

    Рассмотрим теперь упрощенную методику построения кривых ИТК нефти по данным о выходе продуктов перегонки, их фракционном составе по стандартной разгонке и температурным точкам деления [10]. Такая методика позволяет оперативно оценивать возможные изменения фракционного состава нефти, поступающей на переработку. Она основана на допущении о равенстве температур 50% отгона каждого продукта по ИТК и по стандартной разгонке. Обозначив через А, В, С и т. д. выходы дистиллятов, полученных из нефти, и температуры 50% отгонов этих фракций по стандартной разгонке через /д, tв, Ьс и т. д., получим следующие координаты расчетных точек кривой ИТК первая точка — температура 7д, выход Л/2 вторая точка —температура /г, выход Л+В/2 третья точка — температура /с, выход Л+В+С/2 и т. д. Учитывая, что температура 507о отгона наиболее тяжелого дистиллята, относящегося к светлым нефтепродуктам, не нре-вышает 280—295 °С, расчетную точку кривой ИТК, соответствующую выходу фракции до 350 °С, рекомендуется определять интерполяцией кривой ИТК по ее, наклону в пределах температур /с—/ . [c.27]

    Нефтеперегонный завод для превращения "черной" нефти в "белую" путем перегонки в кубах периодического типа был впервые в мире построен крепостными крестьянами братьями Дубиниными вблизи г. Моздока в 1823 г. Получаемый при этом дистиллят (фотоген) был впоследствии назван керосином. Легко испаряющийся головной продукт перегонки — бензин и тяжелый остаток — мазут сжигали в "мазутных" ямах, так как не находили применения. В 1869 г. в Баку было уже 23 нефтеперегонных завода, а в 1873 г. — 80 заводов, способных пырабатывать 16350 т керосина в год. Полученный керосин по [c.36]

    В.Г. форсунки ранее сжигавшийся мазут стали применять как ценное топливо для паровых котлов, применявшихся в различных отраслях промышленности и судоходстве. Нефтеперегонные заводы появились и в других странах в 40-х гг. Х[Х в. Д. Юнг начал перегонку неф ти в 1848 г. в Англии, в 1849 г. С. Кир — в Пенсильвании (США). Во Франции первый завод построен в 1834 г. А.Г. Гирном. В 1866 г. Д. Юнг взял патент на способ получения керосина из тяжелых нефтей перегонкой под давлением, названной крекиь[гом. [c.37]

    НПЗ бывшего СССР, построенные до 1950 г., были ориентированы на достаточно высокую глубину переработки нефти. В I960 —70 —X гг. в услови5ГХ наращивания добычи относительно дешевой нефти в Урало — Поволжье и Западной Сибири осуществлялось строительство новых НПЗ преимущественно по схемам неглубокой и частично углубленной переработки нефти, особенно в Енропейской части страны. Развитие отечественной нефтепереработки шло как количественно, то есть путем строительства новых мощностей, так и качественно — за счет строительства преимущественно высокопроизводительных и комбинированных процессов и интенсификации действующих установок. Причем развитие отрасли шло при ухудшающемся качестве нефтей (так, в 1980 г. доля сернистых и высокосернистых нефтей достигла 84 %) и неуклонно возрастающих требованиях к качеству выпускаемых нефтепродук — тов. [c.286]

    Мазут — остаток атмосферной перегонки нефти — перегоняется на самостоятельных установках вакуумной перегонки или на вакуумных секциях атмосферно-вакуумных трубчаток (АВТ). На современных вакуумных установках применяют следующие технологические схемы перегонки мазута однократного испарения всех отгоняемых фракций в одной вакуумной колонне однократного испарения с применением отпарных колонн двухкратного испарения отгоняемых фракций в двух вакуумных колоннах. Получаемые при вакуумной перегонке мазута дистилляты могут быть использованы в качестве сырья каталитического крекинга (работа по топливной схеме) и в качестве фракций для производства масел (работа по масляной схеме). При работе по топливной схеме на установке получается одна широкая фракция, направляемая в качестве сырья (широкого вакуумного отгона) на установки каталитического крекинга. Если вакуумная перегонка ведется с целью получения масляных дистиллятов, то к качеству получаемых фракций и в частности к их фракционному составу предъявляются более жесткие требования. На установках, запроектированных и построенных в последние годы, предусматривается получение двух масляных фракций 350—420 °С и 420—490 °С (для типового сырья из ромашкинской и туймазинской нефтей). Далее путем компаундирования можно получить на их основе различные масляные фракции. [c.32]

    При практических расчетах удобно пользоваться не только диаграммами, но и таблицами. Такие таблицы могут быть составлены, если использовать набор различных термодинамических параметров и соотношения между ними, положенные в основу построения их. Таблицы с набором важнейших термодинамических функций пластовой нефти, газа и бинарных смесей, в основном рассмотрены в наиболее употребительной системе единиц МКГСС. [c.131]

    Мощности установок каталитического крекинга по сырью в процентах от количества перерабатываемой на завода нефти (Данные дпя нескопышх зарубежных заводов, построенных в 1953—1955 гг.) [c.98]

    Рассмотрены комплексы и особенности карбонатного осадконакопления, положение рифовых комплексов в составе карбонатных формаций. Предложены методы построения седиментационных моделей карбонатных отложений и палеогеоморфоло-гических реконструкций для прогнозирования нефтегазоносных рифовых комплексов. Описаны типы рифовых ловушек, их поисковые признаки, методы прогнозирования и поисков залежей нефти и газа. [c.199]


Смотреть страницы где упоминается термин Нефть построение цен: [c.112]    [c.36]    [c.29]    [c.104]    [c.45]    [c.29]    [c.298]    [c.190]    [c.4]    [c.4]   
Экономика нефтеперерабатывающей и нефтехимической промышленности (1974) -- [ c.47 ]




ПОИСК





Смотрите так же термины и статьи:

Построение кривых ИТК и качества смеси нефтей

Функциональное построение системы Нефть



© 2025 chem21.info Реклама на сайте