Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молибден каталитические свойства

    Элементы побочной подгруппы VI группы периодической системы хром, молибден и вольфрам являются -переходными металлами последний представитель этой подгруппы — уран принадлежит к /-переходным элементам и включается в семейство актинидов. Различие в строении электронных уровней проявляется в заметном отличии свойств урана от свойств остальных элементов подгруппы. Вместе с тем в химическом поведении элементов имеется достаточно много общего для того, чтобы рассматривать химические (и каталитические) свойства урана совместно е остальными элементами подгруппы. [c.569]


    Направления дальнейших исследований. Обширный класс интерметаллических соединений, особенно очень стабильных Бруеровских соединений, представляет интерес для широкого применения в катализе, особенно в области получения синтетического топлива. Так, появляется возможность приготовления нанесенных интерметаллов, которые имеют необычно высокую термическую и химическую стойкость, комбинацией металлов группы УП1 с титаном, стронцием, гафнием, ванадием, ниобием, таллием, хромом, молибденом и вольфрамом. Из-за очень сильных взаимодействий, возникающих при образовании данных соединений, ожидается, что спекание будет существенно уменьшено. Такие сильные взаимодействия, по-видимому, модифицируют электронные и каталитические свойства металла группы УП1. В некоторых случаях это может приводить к ухудшению каталитических свойств. Например, для 2гР1з интенсивное изъятие электронов атомами циркония делает платину заметно истощенной по электронам, а поэтому менее металлической, чем платина нулевой валентности. Такое чрезмерное взаимодействие можно уменьшить или регулировать использованием в качестве второго элемента металла, расположенного -справа или слева от циркония (например, молибдена). [c.139]

    При испытании целого ряда катализаторов различного состава с целью выбора оптимального содержания гидрирующих компонентов было установлено [69], что максимальная скорость реакции обессеривания достигается при соотношении кобальт молибден равном 0,18. В то же время было показано, что значительное уменьшение содержания гидрирующих компонентов в катализаторе (окиси кобальта -до 1,8-2,7%, окиси молибдена -до 9%) не ухудшает каталитические свойства данного катализатора при гидрооблагораживании средних нефтяных дистиллятов - керосина и дизельного топлива [70]. И, тем не менее, наиболее крупные поставщики катализаторов за рубежом выпускают катализатор АКМ в большинстве случаев с содержанием окиси кобальта на уровне 3 % мае., окиси молибдена 10-15 % [71]. [c.14]

    Подобные же немногочисленные сведения имеются и о каталитических свойствах окиси двухвалентного никеля. Сообщается, что NiO может быть применен для дегидрирования 2-метилбутена-1 в изопрен при очень низкой температуре (100° С) [1561. Запатентован никель-молибден-калиевый катализатор (5,6% Ni, 15,1% MoO.j, 6,6% К) для получения изопрена из 2-метилбутена-2. В зависимости от условий проведения процесса конверсия составляет 21,5—70,7, селективность — 68,4 — 83,3 мол.%) с повышением температуры конверсия увеличивается, а селективность падает [157]. При использовании катализатора, представляющего собой окись никеля, нанесенную на силикагель, наблюдалось, что обработка носителя щелочью благоприятствует образованию а-олефинов из н-парафинов и предотвращает их изомеризацию [158]. [c.168]


    Каталитическая активность металлов в указанных процессах большей частью невысока. Так, при синтезе аммиака железо намного активнее хрома [468], молибдена, вольфрама [999, 1000] и урана [1000]. При рекомбинации атомов водорода молибден, вольфрам и хром уступают по активности кобальту, железу, никелю и танталу, хотя несколько превосходят марганец и медь [10]. Практического применения в катализе металлы подгруппы хрома не имеют, и исследование их каталитических свойств обычно носит теоретический характер. [c.577]

    Для молибдена известен ряд интенсивно окрашенных соединений. Однако при обычной реакции 1 г-атом молибдена может образовать лишь 1 моль окрашенного комплекса. Чувствительность определения молибдена может быть сильно повышена, если использовать его каталитические свойства. Например, перекись водорода хотя и является сильным окислителем, но количественно реагирует с иодидом очень медленно. Молибден является одним из катализаторов этой реакции, поэтому в его очень разбавленных растворах через некоторое время на 1 г-атом молибдена может выделиться 10, 50, 100 и более грамм-атомов иода. Иод затем определяют фотометрически (с крахмалом). Таким образом, удается значительно повысить чувствительность определения молибдена. [c.31]

    Никель один из самых активных металлов — катализаторов. Каталитическая активность никеля зависит от степени дисперсности порошка, его чистоты и методики его получения. Каталитическими свойствами обладают многие сплавы никеля с алюминием, молибденом и с другими элементами, а также и некоторые соединения оксид, сульфид, бориды никеля и другие. [c.490]

    При окислительно-восстановительном (электронном) катализе катализаторами служат проводники электрического тока — металлы и полупроводники (главным образом оксиды металлов). Опытные данные показывают, что наибольшей каталитической активностью и разнообразием каталитического действия обладают металлы больших периодов системы элементов Д. И. Менделеева. Это в основном металлы I, Ч, УП и УП1 групп медь, серебро, хром, молибден, вольфрам, уран, железо, кобальт, никель, платина, палладий и др. Все эти металлы являются переходными элементами с незавершенной -оболочкой и обладают рядом свойств, [c.224]

    Если правильно предположение об электронном механизме действия смешанных контактов, то работа выхода электрона (ф) смесей должна быть больше, чем чистых окислов молибдена и висмута. На рис. 91 показано изменение ф в зависимости от состава молибден-висмутового катализатора. Максимальная работа выхода электрона соответствует содержанию 35—40% атомн. В1. При добавлении окисла висмута в окись молибдена ф и селективность процесса окисления пропилена увеличиваются. Такое симбатное изменение каталитических и электронных свойств не может служить однозначным доказательством электронного механизма. [c.227]

    Большинство каталитически активных металлов, как указывалось выще, представляет собой элементы VI и VIII групп Периодической системы элементов Д. И. Менделеева (хром, молибден, вольфрам, железо, кобальт, никель, платина и палладий). В некоторых случаях сульфиды и окислы этих металлов в свободном состоянии (без носителей) обнаруживают кислотные свойства. Примером может служить дисульфид вольфрама, обладающий каталитической активностью в реакциях гидроизомеризации, гидрокрекин" га и насыщения кратных связей. Так как серосодержащие соединения присутствуют практически в любом сырье, следует применять серостойкие катализаторы — сульфиды металлов. В большин-, стве современных процессов в качестве катализаторов используют кобальт или никель, смешанные в различных соотношениях с молибденом, на пористом носителе (окиси алюминия). Иногда применяют сульфидный никельвольфрамовый катализатор. [c.215]

    Содержание атомов металла на моль фермента, как правило, от 1—2 до 4—6. В каталитические центры истинных металлоэнзимов ионы металлов включаются в процессе биосинтеза ферментов. В активные центры истинных металлоэнзимов обычно входят строго определенные катионы, которые не удается заменить даже близкими по физико-химическим свойствам ионами. Чаще всего в их составе находится железо, медь, молибден или цинк. [c.113]

    Активность металла обнаруживает некоторую зависимость от его электронных свойств. Большинство каталитически активных металлов представляет собой элементы VI и УП1 групп периодической системы Менделеева (хром, молибден, вольфрам, железо, кобальт, никель, платина и палладий). В некоторых случаях сульфиды и окислы в свободном состоянии (без носителей) обнаруживают кислотные свойства. Примером может служить дисульфид вольфрама, обладающий каталитической активностью в реакциях гидроизомеризации и гидрокрекинга, а также в реакциях насыщения кратных связей. [c.206]

    Включение ионов металлов в каталитические центры истинных металлоэнзимов происходит в процессе биосинтеза ферментов. В активные центры истинных металлоэнзимов, как правило, входят определенные катионы, которые невозможно заменить другими, даже близкими по физико-химическим свойствам ионами металлов. В состав истинных металлоэнзимов чаще всего входят железо, медь, молибден или цинк. [c.135]


    Природа сульфидирования поверхности и его взаимосвязь с катализом гидросероочистки — другая важная сторона, которая нуждается в дальнейшем изучении. В этой области могут сыграть ключевую роль новые материалы и новые методы приготовления катализаторов с высокоразвитой поверхностью. Например, вещества общей стехиометрической формулы МеаМозО (где Me = Mg, 2п, Со, Мо и др.) предложены для исследования как катализаторы гидросероочистки из-за необычного положения атомов молибдена в этих структурах. Они располагаются в вершинах равносторонних треугольников с расстоянием молибден— молибден равным 0,253 нм (меньшим, чем в металлическом молибдене). Подтвердилось, что эти вещества, изготовленные с развитой поверхностью, демонстрируют замечательные каталитические свойства в реакциях гидрирования и гидрогенолиза с активностями, значение которых располагается между теми, которые наблюдаются для металлов и оксидов [112]. [c.87]

    Уже давно были исследованы каталитические свойства металлов, которые позволяли проводить реакцию гидрогенолиза сернистых соединений. К таким металлам относятся скандий, титан, ванадий, хром, марганец, железо, кобальт, никель, медь, цинк, иттрий, цирконий, молибден, рутений, родий, палладий, серебро, кадмий, лантан, гафний, тантал, вольфрам, рений, осьмий, иридий, платина, золото, ртуть, актиний, торий, уран. Наиболее часто в промышленных процессах гидроочистки щ)имвняются соединения металлов групп У1А и железа, сочетание окислов и сульфидов кобальта и молибдена, сульфидов никеля и вольфрама. [c.2]

    Одновременно были начаты изыскания наиболее активного и дешевого катализатора синтеза аммиака. В истории развития каталитических процессов, пожалуй, никогда не проводилось столь обширных работ, как те, которые были предприняты немецкими фирмами. Без руководящей идеи о том, кахсова должна быть природа активной поверхности катализатора, исследовались каталитические свойства огромного числа различных соединений, были испытаны металлы почти всех групп периодической таблицы. Про Габера слагались анекдоты сохранился рассказ о том, как он открывал шкаф с химическими реактивами, брал первое попавшееся в руки вещество и тотчас опробовал его в качестве катализатора синтеза аммиака. Однако из огромного числа испытанных соединений активными оказались лишь немногие — железо, осмий, уран, молибден. Из них для технических целей наиболее подходящими явились сплавы железа с некоторыми другими металлами в чистом виде железо оказалось мало активным катализатором. Наибольшую активность проявила окись железа, восстановленная в расплавленном виде водородом. Но применять этот катализатор в промышленности не удалось, так как активность его быстро падает. Прибегли к помощи добавок, увеличивающих конверсию азота и повышающих термостойкость катализатора. [c.113]

    Однако из всего многообразия изучешхых систем в конечном итоге отдается предпочтение в настоящее время значительно меньшему числу элементов и их сочетанию - это кобальт, никель, молибден, реже вольфрам, платина, ванадий, железо. Выбор подобных элементов определяется многими факторами, положительно характеризующими их мак с позиций их электронной структуры, так и свойств их солей и соединений, определяющих и технологичность операций создания катализатора, и применимость в практике созданной каталитической системы. Итак, круг элементов, используемых в синтезе катализатора гидрообессеривания нефтяных остатков, значительно сузился. [c.94]

    Сочетание процессов деасфальтизации и каталитической деметалли-зации полученного деасфальтизата позволяет цри минимальных затратах получить максимальный выход целевого продукта с требуемыми свойствами. Исследованием в качестве контактов деметаллизации систем. состоящих иэ железа, кобальта, никеля или молибдена, нанесенных на окись алшиния, показано преимущество контакта, представляющего собой специально подготовленную окись алшиния с нанесенный молибденом. Библ.9. табл.4. [c.130]

    Каталитическая активность полимерных комплексов в значительной степени зависит от окислительно-восстановительного потенциала металла (медь, железо, молибден, кобальт, никель, хром, марганец в различных степенях окисления) она возрастает с падением стабильности полихелата и с уменьшением упорядоченности его структуры (отсутствие кристалличности, искаженная геометрическая конфигурация, наличие не полностью насыщенных координационных центров). У порфириноподобных полимеров, упо. янутых выше, большое значение имеет наличие системы сопряжения и коллективных электронных свойств (часто активность растет с падением энергии-активации электропроводности). Иногда смешанные комплексы, содержащие металлы нескольких типов, действуют сильнее, чем комплексы с металлами одного типа. При использовании некоторых макромолекулярных хелатов-для инициирования полимеризации стирола, метилметакрилата и т. д основная реакция сопровождается прививкой к макрохе-лату. [c.328]

    Хорошо известно, что окисвые катализаторы, содержащие молибден, широко используются в селективном окислении и окислительном аммоно-лизе олефинов. Недавно было обнаружено, что многокомпонентные окис-ные катализаторы, состоящие, в основном, из Мо, В1, Ре и Со (К1 ) являются очень активными и селективными в этих процессах и представляют промышленный интерес. В литературе появился ряд сообщений о свойствах таких каталитических систем(1-3]. [c.63]

    Этот вопрос в действительности, по-видимому, более сложен, хотя факторы накопления и отбора, безусловно, играют в нем важнейшую роль. Мы легко можем указать ряд случаев, когда комплексный ио проявляет качественно иные каталитические функции, чем простой или гидратированный ион. Достаточно вспомнить о хлорофилле, кар-бон-ангидразе, ферментах, катализирующих фиксацию азота и, вероятно, содержащих молибден, чтобы понять, как резко иногда функции иона отличаются от свойств комплекса, в состав которого этот ион входит. У нас не имеется никаких данных относительно автокаталитических свойств названных соединений. [c.241]

    Н. С. Полуэктов 3 предложил косвенный каталитический метод определения рения, который основан на свойстве рениевой кислоты и ее солей каталитически ускорять восстановление теллурата натрия хлоридом олова (II) до элементарного теллура. При прочих равных условиях количество восстановленного теллура пропорционально концентрации рения, которую можно определить, измерив светопоглощение коллоидного раствора теллура, после введения в него защитного коллоида. Этим методом можно ч)нределять от 0,001 до 0,1 мпг рения с точностью 10—20%, Молибден мешает определению. Азотная кислота подавляет реакцию. Другие кислоты также влияют на интенсивность окраски. Доп. перев.  [c.380]

    Как было отмечено выше, изонитрилы также могут выступать в качестве окислительных субстратов нитрогеназы [140—142]. Они восстанавливаются в углеводороды, содержащие атом углерода изонитрильной группы, и первичные амины, образующиеся из фрагмента R—N. Изонитрилы, так же как и азот, присоединяются к атомам переходных металлов концом молекулы. При восстановлении связанного метилизонитрила в качестве основного продукта шестиэлектронной реакции образуется метан, тогда как при восстановлении некоординированной молекулы изонитрила процесс идет в основном до диметиламина — продукта пятиэлектронной реакции. Такое сочетание свойств делает изонитрилы превосходным субстратом при изучении как биологических нитрогеназ, так и модельных систем. При использовании в качестве катализатора комплекса молибден — цистеин состава 1 1 основными продуктами восстановления изонитрила борогидридом натрия являются этилен и этан [137]. Как и в случае ацетиленовых субстратов, экспериментальные данные согласуются с каталитической активностью мономерных молибденовых комплексов. Восстановление слабо ингибируется молекулярным азотом и более эффективно подавляется окисью углерода. Опыты с N2 показали, что азот как ингибитор этой реакции восстанавливается до аммиака и что молекулы N2 и RN связываются одними и теми же центрами, по-видимому, атомами молибдена. Кроме того, азот и окись углерода — конкурентные ингибиторы восстановления изонитрилов нитрогеназой, что убедительно показывает наличие у молибдена свойств, необходимых для связывания и восстановления субстратов. На рис. 49 [c.318]

    Опытные данные показывают, что наибольшей каталитической активностью и разнообразием каталитического действия обладают металлы больших периодов системы Д. И. Менделеева. Это в основном металлы I, VI, VII и VIII групп медь, серебро, хром, молибден, вольфрам, уран, железо кобальт, никель, платина, палладии и др. Все эти металлы являются переходными элементами с незавершенной -оболочкой и обладают рядом свойств, способствующих каталитической активности переменной валентностью, склонностью к комплексообразованию, сравнительно невысокой работой выхода электрона и т. п. Особенно велика каталитическая активность металлов, у которых сумма (1- и х-электронов выше, чем число электронов, участвующих в металлической связи, так как наличие неспаренных электронов на внешних с1 и 5-орбиталях особо выгодно для поверхностных взаимодействий. В приближенном рассмотрении катализ на металлах основан на активированной адсорбции (хемосорбции) реагентов поверхностью катализатора, которая сопровождается акцептор но-донорными переходами электронов в -оболочку мета лла и в обратном направлении, в зависимости от типа реакций. Однако нельзя считать, что этими переходами исчерпывается вся сущность каталитического акта. [c.244]


Смотреть страницы где упоминается термин Молибден каталитические свойства: [c.208]    [c.214]    [c.122]    [c.428]    [c.254]    [c.23]    [c.738]    [c.268]    [c.288]    [c.78]    [c.152]    [c.190]    [c.328]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Молибден, свойства



© 2024 chem21.info Реклама на сайте