Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронная конфигурация азота

Рис. 31-2. Электронные конфигурации азота и фосфора. Рис. 31-2. <a href="/info/481406">Электронные конфигурации азота</a> и фосфора.

    Определите число и форму орбиталей молекулы азота. Постройте приближенную энергетическую диаграмму уровней молекулы и приведите ее электронную конфигурацию. [c.9]

    Простое вещество. Электронная конфигурация молекулы азота N2. [c.344]

    Элементы главной подгруппы V группы — азот Ы, фосфор Р, мышьяк Аз, сурьма 8Ь, висмут 81. Согласно электронным конфигурациям их атомов [c.343]

    Постройте энергетическую диаграмму орбиталей и приведите электронные конфигурации основного состояния молекулы азота и молекулярных ионов и NT. [c.60]

    Приведите электронную конфигурацию атома азота. [c.94]

    Молекула азота Ыа имеет электронную конфигурацию (см. стр. 91)  [c.389]

    Дать сравнительную характеристику атомов элементов подгруппы азота, указав а) электронные конфигурации б) валентные возможности в) наиболее характерные степени окисленности. [c.228]

    Аналогичное поведение обнаруживается и у элементов группы VA, но граница между металлами и неметаллами в этой группе проходит ниже. Азот и фосфор являются неметаллами, химия их ковалентных соединений и возможные состояния окисления определяются наличием пяти валентных электронов в конфигурации Азот и фосфор чаще всего имеют степени окисления — 3, -Ь 3 и +5. Мыщьяк As и сурьма Sb-семи-металлы, образующие амфотерные оксиды, и только висмут обладает металлическими свойствами. Для As и Sb наиболее важным является состояние окисления + 3. Для Bi оно единственно возможное, если не считать степеней окисления, проявляемых в некоторых чрезвычайно специфических условиях. Висмут не может терять все пять валентных электронов требуемая для этого энергия слишком велика. Однако он теряет три бр-электро-на, образуя ион Bi .  [c.455]

    Электронные оболочки. Наиболее простой способ — запись по электронным оболочкам. При этом указываются заряд ядра и количество электронов на каждой электронной оболочке по мере увеличения ее номера. Например, для атома азота и его иона N+ электронная конфигурация по оболочкам выглядит так  [c.63]

    Теория поля лигандов. В теории поля лигандов учитывают электронные конфигурации лигандов и изменение этих конфигураций при комплексообразовании (координировании). В этой теории в соответствии с методом МО комплекс рассматривается как единое целое, в котором отдельные атомы нли молекулы теряют свои индивидуальные черты. Например, комплекс [Со(МНз)вР+ представляется в виде скелета из шести ядер азота, 18 ядер водорода и ядра кобальта, в поле которых движутся 84 электрона. [c.49]


    Энергетическое различие 2s- и 2/ -орбиталей в периоде увеличивается от I к VIII группе (см. рис. И). Поэтому приведенная последовательность молекулярных орбиталей характерна для двухатомных молекул элементов начала периода вплоть до N2. Так, электронная конфигурация молекулы азота в основном состоянии имеет вид [c.54]

    СПЕКТРОСКОПИЧЕСКАЯ НОМЕНКЛАТУРА. Для краткости вместо того, чтобы говорить, например, атом водорода имеет один электрон на ls-орбитали , говорят водород Is (читается один- -один). Аналогично электронная конфигурация азота сокращенно обозначается ls 2s 2p , показывая, что два электрона находятся на ls-орбитали, два — на 25-орбитали и три — на 2р-орбиталях. Эту сокращенную номенклатуру иногда называют спектроскопической номенклатурой . При таком написании электронной конфигурации элемента орбитали обычно перечисляются в порядке увеличения квантовых чисел п и Z), а не в порядке последовательного заполнения орбиталей- [c.22]

    Электронная конфигурация представлена как совокупность всех предшествующих электронов, показанных на схеме ниже символа данного элемента. Так, электронная конфигурация азота 1 2р , а скандия [c.127]

    Интересная проблема возникает при попытке записать льюисову структурную формулу молекулы распространенного загрязнителя воздуха моноксида азота, N0, Для этой молекулы не удается построить конфигурацию с замкнутыми оболочками, потому что в ней нечетное число валентных электронов. Действительно, в N0 11 валентных электронов, пять из которых первоначально принадлежали атому азота, а щесть-атому кислорода. Таким образом, в молекуле N0 аюм азота или атом кислорода будет окружен только семью, а не восемью электронами. Поскольку азот-менее электроотрицательный элемент, чем кислород, следует ожидать, что неполное окружение должно быть именно у этого атома. Следовательно, наилучшей структурой N0 должна быть такая  [c.468]

    В. молекуле N0 — на один электрон больше, который располагается в единственном числе на разрыхляющей орбитали тг-типа. Это приводит к уменьшению порядка связи, по сравнению с порядком связи в молекуле азота, до 2,5. Поскольку порядок связи уменьшился, то энергия связи уменьшилась, а это привело к тому, что расстояние между атомами в молекуле увеличилось до 115 пм. Электронная конфигурация молекулы  [c.129]

    Электронная конфигурация атома азота ls 2s 2p отвечает следующему распределению электронов по квантовым ячейкам  [c.105]

    Таким образом, между двумя атомами кислорода в молекуле О2 имеется двойная связь. Чтобы каждый атом азота в молекуле N2 приобрел электронную конфигурацию благородного газа, должна осуществляться тройная связь  [c.467]

    Азот. В молекуле азота, N2, все связывающие орбитали, энергетические уровни которых изображены на рис. 12-8, оказываются заполненными. Молекула N2 имеет электронную конфигурацию  [c.526]

    Зти ионы и eют такую же электронную конфигурацию, как атом азота (см. рис. 1.34). При соединении нонов С и 0+ образуется тройная связь, аналогичная связи в молекуле N2. Очевидно, тройная связь более прочна, чем двойная система с тройной связью обладает более низкой энергией. Выделение энергии при образовании третьей связи с избытком компенсирует ее затраты на перенос электрона от более электроотрицательного кислорода к угле- [c.95]

    Эту электронную конфигурацию можно интерпретировать следующим образом. Три занятые а-орбитали соответствуют двум парам электронов (одна из них преимущественно локализована у атома углерода, вторая — около атома азота) и одной о-связи между атомами углерода и, <ислорода. Дважды вырожденный л, -уровень соответствует образованию двух я-связей. Молекула СО характеризуется очень большой энергией диссоциации (1069 кДж/моль), высоким значением силовой постоянной связи (ксо= 1860 Н/м) и малым межъ-ядерным расстоянием (0,1128 нм). Электрический момент диполя молек лы СО незначителен ( х = 0,04 Кл м) при этом эффективный заряд на атоме углерода отрицательный, а на атоме кислорода — положительный. [c.405]

    Особый интерес представляет сродство к электрону элементов группы 5А. В основном состоянии атомы элементов группы 5А обладают электронной конфигурацией пБ пр пр пр. Другими словами, в соответствии с правилом Гунда все валентные р-ор-битали этих атомов наполовину заполнены электронами, спины которых ориентированы в одинаковом направлении. Присоединение электрона к такой довольно устойчивой конфигурации энергетически невыгодно, и действительно, сродство к электрону азота близко к нулю или даже несколько положительно (см. разд. 6.6, ч. 1). Значения сродства к электрону для других элементов группы 5А отрицательны, но все же присоединение электрона к любому элементу группы 5А приводит к выделению значительно меньшей энергии, чем для элементов группы 6А или 7А. Наличие устойчивой, наполовину заполненной электронной подоболочки ответственно также за относительно высокие значения энергии ионизации элементов группы 5А, особенно в случае азота, который имеет более высокий потенциал ионизации, чем кислород. [c.314]


    Электронные оболочки и подоболочки. Этот метод записи электронных конфигураций используют наиболее часто. Номер электронной оболочки (главное квантовое число) указывают цифрой, а тип подоболочки (орбитальное квантовое число) — буквой 8, р,(1 или /. Количество электронов указывается цифрой справа вверху у символа подоболочки. Для атома и иона азота данная запись имеет следующий вид  [c.63]

    Эти ионы имеют такую же электронную конфигурацию, как атом азота (см. рис. 1.33). При соединении ионов С и О образуется тройная связь, аналогичная связи в молекуле N2. Очевидно, что тройная связь более прочна, чем двойная система с тройной связью обладает более низкой энергией. Выделение энергии при образовании третьей связи с избытком компенсирует ее затраты на перенос электрона от более электроотрицательного кислорода к углероду, и можно считать, что в молекуле СО, как и в N2, имеется тройная связь. Поэтому физические свойства оксида углерода и азота весьма близки  [c.102]

    Фосфор имеет электронную конфигурацию [Ке]35 3р . Подобно азоту, он проявляет степени окисления, начиная от - 3 и кончая + 5. Благодаря более низкой электроотрицательности фосфор чаще, чем азот, встречается в положительных состояниях окисления. Более того, соединения, в которых фосфор имеет степень окисления + 5, не являются сильными окислителями, как соответствующие соединения азота. Соединения, в которых фосфор находится в состоянии окисления — 3, гораздо более сильные восстановители, чем соответствующие соединения азота. [c.321]

    Учитывая, что молекула азота диамагнитна, дать ее электронную конфигурацию на основе метода ВС и метода МО. Сколько связей в молекуле Nj и каков их характер  [c.146]

    Какова электронная конфигурация атомов элементов группы азота  [c.84]

    Молекула ВЫ содержит 8 электронов, ее электронная конфигурация отвечает формальному образованию двух связей. Молекулы ВО, С0+ и СЫ содержат по 9 электронов, что соответствует порядку связей 2,5. Отсюда межъядерные расстояния в этих молекулах короче, а энергии диссоциации больше, чем в молекуле ВЫ. Тройная связь (одна о- и две я-связи) осуществляется в молекулах СО, Ы0+ и СЫ, которые изоэлектронны молекуле азота. [c.191]

    Атом азота, обладающий электронной конфигурацией 15 25 2р , имеет три р-орбитали, расположенные во взаимно перпендикулярных направлениях - по осям х, у и г. Предположим, что два атома азота приближаются друг к другу, двигаясь [c.94]

    Электронная конфигурация представлена совокупностью всех электронов, введенных в диаграмму до символа данного элемента. Так, электронная конфигурация азота 1з 28 2р , а скандия 1з 25 2р 35 3рЧ8 3с1. [c.118]

    На основании этого устойчивой электронной конфигурацией азота будет конфигурация Не)2зЧр]с2р1 2р1, Конфигурация (Не)25 2р 2р1 соответствует возбужденному состоянию азота, его энергия на 230 кДж/моль больше. Спаривание электронов с противоположными спинами на 2р-орбиталях начинается в атоме кислорода его конфигурация имеет вид Не)2з 2р12р12р. Неон имеет иолнос 5 >ю заполненный набор р-орбиталей, в котором нет неспаренных электронов. [c.54]

    Ниже записаны различные электронные конфигурации атома азота N(7 = 7). Укажите, какие из этих конфигураций соответствуют возбужденному основному или запрещенному (недопусгимому) состоянию. [c.410]

    Молекула Конфигурация [КК((У25)Ца 2вУ л2р = п2ру) х X (а2р 2]. Терм Все 14 электронов молекулы азота спарены, и молекула диамагнитна избыток в шесть связывающих электронов соответствует представлению о тройной связи. Молекула N3 поэтому наиболее стабильна из всех гомонуклеарных двухатомных молекул Do(N2) = 9,759 эВ, л,(Ыг) = 1,08758 10-1 (1,08758 А). Тройную связь в N2 можно обозначить символом Высокая стабильность [c.79]

    Число ковалентных связей, которые может образовать данный атом (ковалентность атома), определяется числом неспарепных электронов. Например, атом углерода в состоянии 2з2р имеет четыре неспаренных электрона и может образовать четыре ковалентные связи. Атом азота имеет электронную конфигурацию внешнего слоя 25 2р и имеет три неспарениых 2р-электрона и, следовательно, является трехковалентным элементом. Положительный ион азота в состоянии 2з2р имеет четыре неспаренных электрона и может образовать четыре ковалентные связи (например, в ионе КН ). [c.11]

    Приведенную электронную конфигурацию можно интерпретировать следующим образом. Три занятые а-орбитали соответствуют двум парам электронов (одна из них преимущественно локализована у атома углерода, вторая — около атома азота) и одной а-связи между атомами углерода и кислорода. Дважды вырожденный -уровень соответствует образованию двух я-связей. Молекула СО характеризуется очень большой энергией диссоциации (1066 кдж1моль), высоким значением силовой постоянной связи (/гсо=18,6) и малым межъядерным [c.459]

    Атом с номером 7, азот, имеет 3 неспаренных элеюрона на внешнем уровне. Суммарный спин +3/2. Электронная конфигурация ls 2s 2p  [c.42]

    В качестве примера определения геометрической конфигурации молекул, содержащих неэквивалентные электронные пары рассмотрим строение молекулы аммиака NHз. В данной молекуле азот (электронная конфигурация 7N... 25 2р 2р 2р ) и три атома водорода ( И 1з ) образуют за счет (1 + 1)-взаимодействий 3 поделенные электронные пары. Четвертая — неподеленная электронная пара принадлежала атому азота и до образования связей. Таким образом, на электронной оболочке азота в молекуле NHз находятся 4 электронные пары. Если бы все эти пары были эквивалентными, то они распо.пагались бы [c.134]

    Если на -подуровне могут быть только два электрона (с противоположными спинами), то уже на р-подуровне их число может достигать шести. Поэтому возникает вопрос, каким образом ориентированы спины электтнов. Так, для атома азота (электронная конфигурация li 2r2 ) два электрона на первом уровне, пять-на втором) возможны два следующих варианта [c.31]

    Хроматоскопия молекул, содержащих азот в различных электронных конфигурациях и галогены, а также серу и другие элементы, с помощью соответствующих полуэмпирических атом-аТомных потенциалов (<рм...С(гто и других) должна помочь решению многих структурных вопросов и выяснению связанных с ними свойств, [c.202]

    Второй период образует атомы от до Ne. В направлении — Ке растет эффективный заряд ядра, в связи с чем уменьшаются размеры атомов (см. Гшах), возрастает потенциал ионизации и осуществляется, начиная с В, переход к неметаллам. Потенциал ионизации отражает не только рост в ряду —Ке, но и особенности электронных конфигураций потенциал ионизации у бора ниже, чем у бериллия. Это указывает на упрочнение заполненных нодоболочек ( у бериллия). Более высокий потенциал ионизации азота по сравнению с кислородом указывает на повышенную прочность конфигурации р , в которой каждая орбиталь занята одним / -электроном. Аналогичные соотношения наблюдаются и в следующем периоде у соседей Mg—А1 и Р—5. У атомов второго периода отрыв электрона с внутреннего Ь -слоя требует такого высокого ПИ (75,62 эВ уже у лития), что в химических и оптических процес--сах участвуют только внешни электроны. Сродство к электрону в ряду Ы—Р имеет тенденцию к возрастанию. Но у берилжя оболочка заполнена, и сродство к электрону эндотермично так же, как и у гелия (1л ). Обладая самым высоким потенциалом ионизации ю всех неметаллов и высоким сродством к электрону, фтор является наиболее электроотрицательным элементом в периодической системе. Для атома неона СЭ (Ке)=—0,22 эВ. Оболочка з р атома Ке, электронный октет, характеризуется суммарным нулевым спином и нулевым орбитальным моментом (терм 5о). Все это, вместе с высоким потенциалом ионизации и отрицательным сродством к электрону, обусловливает инертность неона. Такая же з р конфигурация внешнего слоя характерна для вСех элементов нулевой группы. Исследования последних лет показывают, что 1 п, Хе,Кг и Аг дают химические соединения со фтором и кислородом. Очевидно, что з р конфигурация не влечет как непременное следствие химической инертности. Все атомы со спаренными электронами (терм о) — диамагниты (Не, Ве, Ке и т. д.). Конфигурации внешнего электронного слоя у атомов 2-го и 3-го периодов, стоящих в одних и тех же группах, одинаковы, чем объясняется близость химических свойств элементов, стоящих в одних и тех же группах (сравните Ка иЬ1 в табл. 5). Но наблюдается и различие элементы второго периода обладают постоянной валентностью, а третьего — переменной. Это связано с тем, что у атомов третьего периода есть вакантные -состояния в третьем квантовом слое, а во втором слое таких соединений нет. [c.62]


Смотреть страницы где упоминается термин Электронная конфигурация азота: [c.407]    [c.539]    [c.118]    [c.60]    [c.464]    [c.64]    [c.129]   
Курс физической органический химии (1972) -- [ c.38 ]




ПОИСК





Смотрите так же термины и статьи:

Азот электронная конфигурация молекулы

Электрон конфигурации

Электронная конфигурация

Электронная конфигурация атома азота



© 2025 chem21.info Реклама на сайте