Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомные орбитали атома водорода

    В ионе аммония каждый атом водорода связан с атомом азота общей электронной парой, одна из которых реализована по донор-но-акцепторному механизму. Важно отметить, что связи Н—N. образованные по различным механизмам, никаких различий в свойствах (например, в энергии связи, дипольном моменте связей и т. д.) не имеют, т. е. независимо от механизма образования возникающие ковалентные связи равноценны. Указанное явление обусловлено тем, что в момент образования связи орбитали 2в- и 2р-электронов атома азота изменяют свою форму. В итоге возникают четыре совершенно одинаковые по форме орбитали. Поскольку форма этих новых орбиталей есть нечто среднее между формами 8- и р-орбиталей, то эти новые орбитали принято называть гибридными, а процесс их возникновения — гибридизацией атомных орбиталей (б).  [c.36]


    Молекулярные орбитали (МО) образуются из атомных орбиталей (АО). Атомная орбиталь выражается через собственную функцию (волновую функцию) я]) элeкtpoнa в пространстве, т. е. в зависимости от ко-орди[1ат X, у и Z, причем ядро атома находится в начале системы координат. Простейшим примером является атом водорода. Его АО определяются из независимого от времени уравнения Шредингера (1926 г.)  [c.53]

    В случае хр -гибридизации у атома углерода появляются три гибридные орбитали и сохраняется одна негибридная р-орбиталь. Гибридные орбитали находятся в одной плоскости под углом 120° относительно друг друга, а р-орбиталь расположена перпендикулярно этой плоскости. Соответственно атом углерода образует три а-связи с атомом углерода и атомом водорода и одну л-связь с атомом углерода. При хр -гибридизации атомных орбиталей у двух атомов углерода образуются алкены — непредельные углеводороды с одной двойной связью [c.302]

    Когда два атома, например, хлор и водород, вступают в химическое взаимодействие (Н + С1 -> НС1) и образуют молекулу хлорводорода, наблюдается глубочайшее изменение свойств водорода и хлора в составе НС1 Окислительные свойства l-атома превращаются в восстановительные ) хлорид-иона СГ, а сильный восстановитель Н-атом становится окислителе у Н . В полярной ковалентной молекуле НС1 эти свойства складываются i преобладают в целом свойства НС1 как восстановителя в реакциях с сильными окислителями (МпОг, СгОз), и как окислителя в реакциях с сильными восстановителями (Na, Са, А1). Из этого с очевидностью следует, что атом ные орбитали атомов хлора (Фа) и водорода (фд), вступили во взаимодей ствие и возникли молекулярные орбитали ,01 - Сущность этого явления i одном из наиболее распространенных методов квантовой механики — мето да линейной комбинации атомных орбиталей (метод ЛКАО МО) записывает ся математически в форме сложения и вычитания  [c.60]

    Точный расчет волновых функций многоэлектронных атомов становится затруднительным вследствие большого числа электрон-электрон-ных отталкиваний, которыми мы до сих пор для простоты пренебрегали. В 1927 г. Хартри для разрешения этой проблемы при расчете волновых функций атомов предложил метод, который теперь известен как метод самосогласованного поля (ССП) и который позднее был видоизменен Фоком с учетом принципа Паули. В этом методе предполагается, что каждый электрон движется в сферически-симметричном потенциальном поле, создаваемом ядром и усредненными полями всех других электронов, за исключением рассматриваемого. Расчет начинают с приближенных волновых функций для всех электронов, кроме одного. Определяют средний потенциал, который обусловлен другими электронами, а затем решают уравнение Шредингера для этого одного электрона, используя средний потенциал, обусловленный другими электронами и ядром. С полученной волновой функцией проводят более точный расчет среднего поля и затем из уравнения Шредингера определяют приближенную волновую функцию для второго электрона. Этот процесс продолжают до тех пор, пока набор вычисленных волновых функций будет незначительно отличаться от предыдущего набора. Тогда говорят, что данный набор волновых функций самосогласован. Для расчета волновых функций многоэлектронного атома требуются трудоемкие вычисления. Обсчет какого-либо конкретного атома методом самосогласованного поля дает ряд атомных орбиталей, каждая из которых характеризуется четырьмя квантовыми числами и характеристической энергией. В противоположность атому водорода в этом случае орбитальные энергии зависят как от главного квантового числа п, так и от орбитального квантового числа I. [c.396]


    Аммиак, NHj. Этот пример рассматривается главным образом для того, чтобы показать построение вырожденных молекулярных орбиталей. Симметрия молекулы- j,, Для образования связей пригодны семь атомных орбиталей три 1.s-орбитали атомов водорода, одна 2л- и три 2р-орбитали атома азота, следовательно, должно образоваться семь М0. Атом азота занимает центральное положение, поэтому систему координат нужно выбрать так, чтобы его АО были расположены на всех элементах симметрии точечной группы j . Необходимая таблица характеров приводится в табл. 6-4. Орбитали 2я и 2р азота имеют симметрию Ау, а орбитали 2р и 2р . вместе принадлежат к неприводимому представлению Е. Из трех 1.s-орбиталей атомов водорода образуются групповые орбитали. Элементы симметрии точечной груп- [c.277]

    Рассмотрим линейную трехатомную молекулу ВеН,. Орбитали этой молекулы образуются за счет перекрывания атомных орбиталей, расположенных вдоль оси, соединяющей атом Ве и два атома Н (рис. 48). Таким образом, орбитали молекулы ВеНа возникают за счет 25- и 2/7-Орбиталей атома Ве и Ь-орбиталей двух атомов Н. Перекрывание Ь-орбиталей двух атомов водорода с 28-орбиталью атома бериллия приводит к образованию трехцентровых молекулярных и аР Р-орбиталей (рис. 49). Это отвечает следующей линейной комбинации орбитали атома бериллия и орбиталей двух атомов водорода  [c.95]

    В молекуле аммиака неспаренные образуют три. электронные пары с рода. У атома азота остается неподеленная пара электронов т. е. два электрона с антипаралелльными спинами на одной атомной орбитали. Атомная орбиталь иона водорода не содержит электронов (вакантная орбиталь). При сближении молекулы аммиака и иона водорода происходит взаимодействие неподелен-ной пары электронов атома азота и вакантной орбитали иона водорода. Неподеленная пара электронов становится общей для атомов азота и водорода, возникает химическая связь по донорно-акцепторному механизму. Атом азота молекулы аммиака является донором, а ион водорода — акцептором. Обозначив неподеленную пару электронов двумя точками, вакантную орбиталь квадратом, а связи черточками, можно представить образование иона аммония следующей схемой  [c.40]

    При р2-гибридизации электронные облака располагаются в одной плоскости под углами 120° друг относительно друга. Из экспериментальных данных действительно следует, что молекула этилена имеет плоское строение (рис. 47). Химическая связь, для которой линия, соединяющая атомные ядра, является осью симметрии связывающего электронного облака, называется а-связью. а-Связь возникает при лобовом перекрывании атомных орбиталей. В молекуле этилена каждый атом углерода образует по три а-связи одну друг с другом, а две — с двумя атомами водорода. Имеющиеся у атомов углерода негибридные орбитали образуют одну так называемую я-связь. Химическая связь, для которой связывающее электронное облако имеет только плоскость симметрии, проходя- [c.110]

    Вода, Н2О. Симметрия молекулы-С2 . Для построения МО имеются шесть атомных орбиталей две 1. -орбитали атомов водорода, одна 1х- и три 2/)-орбитали атома кислорода. Комбинируя их, получим шесть МО. Поскольку молекула имеет центральный атом, его АО принадлежат к неприводимым представлениям точечной группы Образуем групповые орбитали из 1. -орбиталей атомов водорода. Применение к ним операций симметрии показано на рис. 6-19. Таблица характеров для С2 приведена в табл 6-2. [c.276]

    Такой подход не позволяет определить знак Наь, который фактически зависит от выбора знака 2р-орбитали (т. е. от того, принимает лп она положительные значения в направлении к атому водорода или в обратном направлении). Для положительных значений интеграла перекрывания между двумя атомными орбиталями величина Наь отрицательна. [c.119]

    Атом водорода - простейший из всех возможных его ядро состоит из одного протона, а в электронной оболочке содержится только один s-электрон. Поэтому водород является первым элементом периодической системы и первым s-элементом. Кроме водорода к s-элементам относятся элементы 1-й и 2-й групп периодической системы. У этих элементов все валентные электроны находятся только на ns-атомных орбиталях. [c.240]

    Н, из атомов водорода. Каждый водородный атом имеет один электрон, который занимает 15-орбиталь. Как уже говорилось, эта 15-орбиталь имеет форму шара с атомным ядром в центре. Для образования связи два ядра должны быть сближены настолько, чтобы могло произойти перекрывание атомных орбиталей (рис. 1.3). Для водорода система наиболее стабильна в том случае, когда расстояние между ядрами составляет 0,74 А (7,4-10 нм) это расстояние называется длиной связи. При этом расстоянии стабилизующий эффект перекрывания точно уравновешен отталкиванием между одинаково заряжен- [c.17]


    О вероятностях. Даже если преподаватель решил не останавливаться на подробном обсуждении волнового уравнения Шрёдингера (как бывает, если решено не делать упор на молекулярные орбитали), можно ввести представление о квантовых числах как индексах атомных орбиталей и продемонстрировать взаимосвязь этих чисел с размерами, формой и ориентацией орбиталей. Если эти соотношения удается сделать понятными применительно к атому водорода, их распространение на многоэлектронные атомы обычно не вызывает затруднений у студентов. [c.574]

    Энергия электронов, находящихся на различных орбиталях атома, которую для краткости принято называть энергией атомных орбиталей, показана на рис. 2.13 в зависимости от атомного номера. При г = 1 (атом водорода) число энергетических уровней соответствует числу значений п. При 2 > 1 (многоэлектронные атомы) уровни расщепляются на подуровни с разными значениями I, причем энергия подуровней увеличивается в порядке возрастания I. Хотя ход отдельных кривых довольно сложен, но в целом он разумно объясняется в терминах эффективных зарядов таким же образом, как и различие 2з- и 2/>-подуровней. [c.37]

    Формы атомных орбиталей. Рассмотрим простейшую модель — атом водорода В этом случае единственный электрон вращается вокруг ядра, находящегося в начале координат При этом он может находиться на различных энергетических уровнях и соответственно этим уровням может существовать в нескольких энергетических состояниях, причем основное состояние отвечает минимуму энергии Для атома водорода в основном состоянии полученные решения уравнения Шредингера (Ч ) имеют сферическую симметрию Существует несколько способов их изображения Мы рассмотрим наиболее наглядные [c.42]

    При сближении возбужденной молекулы пропилена с молекулой бензола происходит перераспределение атомных орбиталей с перемещением атома водорода преимущественно к третьему атому углерода пропилена, вследствие чего образуется новая метильная группа. Возникшие изопропильный и фенильный радикалы образуют изопропилбензол. [c.59]

    Атомная орбиталь, изображенная на рис. 2.1 и 2.2, не является единственной орбиталью атома водорода. Она относится к основному состоянию и с химической точки зрения наиболее важна, поскольку атом обычно находится в состоянии с наи-меньщей энергией. Однако существует множество других дозволенных значений энергии и соответствующих им состояний. На рис. 2.3 изображены некоторые наиболее часто встречающиеся АО, в числе которых имеется и АО основного состояния (спектроскопически обозначаемая через 1 ). Очень важно иметь ясное представление о наиболее часто встречающихся атомных орбиталях и в особенности установить и запомнить их свойства симметрии. [c.35]

    В молекуле НС электроны К- и L-оболочек, сильно локализованные около ядра хлора, относятся к типу а . Это справедливо также и по отношению к Зх-электронам . Если направить ось X от атома С1 к атому Н, то связывающие МО валентной оболочки можно представить состоящими из атомных орбиталей С1(3 х) и Н(15), каждая из которых имеет 0-характер. В то же время АО С1(3 0у) и С1(3рг) не могут образовать никакой ЛКАО с водородом, поскольку энергия ближайшей [c.124]

    Энергетические уровни и электронные плотности в этене были приведены в гл. 2 (рис. 2.9). В этене имеется шесть связывающих орбиталей, которые слегка отличаются друг от друга по энергии. В то же время молекулу этена (рис. 3.1) можно рассматривать как построенную из 8р -гибридных орбиталей двух атомов углерода, которые перекрываются между собой и с 18-атомными орбиталями атомов водорода (символ 8р указывает, что гибрид получен из одной 28-и двух 2р-атомных орбиталей). Пять гибридных орбиталей расположены в одной плоскости, расходясь от каждого ато- [c.36]

    Характер заполнения орбиталей атомов К, Са, и Зс показывает, что энергия электронов зависит не только от заряда ядра, но и от взаимодействия между электропами. На рис. 11 показана зависимость энергии атомных орбиталей от порядкового номера элемента (логарифмическая шкала). За единицу энергии электрона принято значение 13,6 эВ (энергия электрона пенозбуждеиного атО ма водорода). Анализ рис. II показывает, что с уаеличениеу порядкового но мера эле мента Z энергия электронов данного состояния (1,5, 2 , 2/ и т. д.) уменьшается. Одпако характер этого уменьшения для электронов разных энергетических состояний различен, что выражается в пересечении хода кривых. В частности, поэтому при Л = 19 и 20 кривые энергии 45-электрона лежат ниже кривой энергии З -электрона, а при 2 =. 21 кривая энергии Зсг-электрона лежит ииже к(1Ивой 4/7-электрона. Таким образом, у калия и кальция заполняется 4х-орби аль, а у скандия 3 /-орбиталь. [c.27]

    Представления о механизме образования химической связи в молекуле водорода можно распространить и на более сложные молекулы. Следовательно, в общем случае механизм образования химической связи сводится к перекрыванию атомных орбиталей, содержащих неспаренные (одиночные) электроны, в результате чего образуется принадлежащая обоим взаимодействующим атомам пара электронов с противоположно направленными спинами, которая осуществляет химическую связь. Отсюда статэвится понятным, что атомы благородных газов, не имеющие неспаренных электронов, не могут объединяться в молекулы. Молекула водорода также не содержит неспаренных электронов и к ней третий атом водорода присоединиться не может. [c.70]

    Расчет электронной структуры молекулы диборана по методу МО приводит к представлению о трехцентровых молекулярных орбиталях, охватываюш,их два ядра бора и расположенный в середине атом водорода. Упрощенный метод построения трехцентровой орбитали состоит в использовании атомной ls-орбитали атома водорода и 5р= -гибридных [c.195]

    С точки зрения приведенного выше представления о молекулярных орбиталях в молекуле этилена каждый атом углерода должен использовать sp -opбитaли для образования связей с тремя атомами. Эти р -орбитали возникают в результате гибридизации 2з-, 2рх - и 2ру -электронов после перехода одного -электрона на р-орбиту, как было показано в разд. 1.3. Можно полагать, что любой атом углерода, связанный с тремя разными атомами, использует для этих связей sp -opбитaли. Таким образом, каждый атом углерода этилена участвует в образовании трех 0-связей по одной с каждым из двух атомов водорода и одной с другим атомом углерода. Поэтому каждый атом углерода имеет еще один электрон иа орбитали 2рг, которая в соответствии с принципом максимального отталкивания перпендикулярна плоскости р -орбиталей. Две параллельные 2 рг-ор-битали могут перекрываться, образуя две новые орбитали, связывающую и разрыхляющую (рис. 1.5). В основном состоянии оба электрона находятся на связывающей орбитали, а разрыхляющая орбиталь остается вакантной. Молекулярные орбитали, образованные при перекрывании атомных орбиталей, оси которых параллельны, называют л-орбиталями, если они являются связывающими орбиталями, и. п -орбиталями, если они являются разрыхляющими орбиталями. [c.22]

    Такое уточнение впервые предложил С. Уанг (1928). Он выполнил свои расчеты лишь для положения равновесия. Н. Розен (1931) обобщил э ги расчеты для произвольного межъядерного расстояния. На рис. 4.3 изображена кривая, найденная Розеном для а как функции от Rabila. малых расстояниях, когда два ядра И сливаются с образованием атома Не, экспонента а должна приближаться к слэтеровской экспоненте атома Не. При Rat- 00 экспонента стремится к экспоненте изолированного атома водорода а->1. При равновесном межъя-дерном расстоянии (Rab = 0,0143 нм а= 1,166, а энергия связи равна 3,76 эВ, что значительно точнее прежнего значения 3,14 эВ. Атом, находясь близко от другого атома, будет поляризовать его, вследсг-вие чего атомная орбиталь не будет симметричной относительно ядра. Этот эффект можно включить в АО, заменив сферически-симметричную АО поляризованной орбиталью вида [c.106]

    На малых расстояниях, когда два ядра Н сливаются с образованием атома Не, экспонента а должна приближаться к слэтеровской экспоненте атома Не. При Яаъ- °° экспонента стремится к экспоненте изолированного атома водорода а- 1. При равновесном межъядерном расстоянии (7 аь = 0,743 А) а= 1,166, а энергия связи равна 3,76 эВ, что значительно точнее прежнего значения 3,14 эВ. Атом, находясь вблизко от другого атома, будет поляризовать его, вследствие чего атомная орбиталь не будет симметричной относительно ядра. Этот эффект можно включить в АО, заменив сферически симметричную АО поляризованной орбиталью вида [c.95]

    Атом водорода состоит из ядра (протона), с которым связан электрон. Точное положение электрона определить нельзя, можно лишь определить вероятность нахождения электрона в любой заданной точке пространства. Для основного состояния атома водорода распределение этой вероятности вокруг ядра симметрично, и можно нарисовать сферическую граничную поверхность, внутри которой вероятность найти электрон составляет, например, 95%. Электрон имеет фиксированную энергию и определенное пространственное распределение, называемое орбиталью. В атоме гелия с ядром связаны два электрона, которые имеют точно одинаковое пространственное распределение и вследствие этого точно одинаковую энергию (т.е. они занимают одну и ту же орбиталь), но различаются по спину (принцип запрета Паули). Обшее правило гласит электроны, связанные с атомными ядрами, занимают орбитали с фиксированной энергией и определенным пространственным распределением, и на каждой орбитали может находиться максимально только два электрона с антипарал-лельными спинами. [c.11]

    Атомы или молекулы (или их ионы), имеющие лишь один электрон, в смысле решения уравнения Шрёдингера, очевидно, относятся к особой категории, поскольку орбитальные волновые функции являются одновременно и полными электронными волновыми функциями. Для таких систем уравнение ШрёдиН гера можно решить точно. Несмотря на то что для химиков пО добные одноэлектронные системы сами по себе не представляют большого интереса, они важны потому, что орбитали многоэлектронных систем во многом подобны орбиталям одноэлект-ронных. Поэтому целесообразно начать изучение атомных орбиталей с рассмотрения точно решаемой задачи, а именно с на хождения волновых функций для электрона в атоме водорода. Задачу решения уравнения Шрёдингера для электронов в ато ме или молекуле можно упростить путем разумного выбора координатной системы, определяющей положение электронов относительно ядер. Для изолированного атома, не подверженного влиянию внешних полей, все направления в пространстве эквивалентны. Можно ожидать, что при фиксированном раС стоянии г от ядра, т. е. на поверхности сферы радиуса г, электронная плотность однородна. Однако для различных г элект ронная плотность будет различна. Поэтому разумно выбрать не обычную декартову систему координат х, у, г, а систему, в которой одной из координат является г. Такая координатная [c.28]

    Шрёдингера для простой молекулярной системы Эта одноэлектронная молекула играет ту же роль при расчетах молекулярных волновых функций, что и атом водорода при расчетах атомных волновых функций. Электронное уравнение Шрёдингера для системы Н можно решить точно, причем волновые функции обладают определенными характерными особенностями, присущими орбиталям и других двухатомных молекул, а во многих важных аспектах и орбиталям многоатомных молекул. [c.74]

    Полярная молекула НГ. На рис. 1.16 дана форма МО простейшей двухатомной гетероядерной молекуш>х НР. Поскош>ку валентная оболочка атома фтора описьшается одной и тремя 2/ -атомными орбиталями, а атом водорода имеет Ь -орбиталь, обш ее число образуюш ихся молекулярных орбиталей в молекуле равно пяти. На четырех нижних по энергии орбиталях фг ц 4 попарно размеш аются восемь электронов, пятая орбиталь пустая. На рисунке, кроме обьемньгх изображений МО, приведены также эскизы орбиталей, даюшде представление о симметрии и о том, какие АО атома фтора использованы для образования данной МО. [c.46]

    Если в центр тетраэдрического ансамбля из четырех атомов водорода поместить атом углерода, то образуется молекула метаив. На рис. 2.19 нрна едена диаграмма взаимодействия атомных орбиталей углерода с групповыми орбиталями ансамбля Н4. [c.170]

    Наиболее полное понимание природы химической связи оказалось возможным, однако, лишь после создания квантовой механики (работы Н. Бора, Л. де Бройля, Э. Шрёдингера и других). Согласно квантово-меха-ническим представлениям, электроны в атомах находятся на атомных орбиталях. Атомная орбиталь (АО) - понятие, принятое для обозначения наиболее вероятной области нахождения электронов в атоме. В физическом понимании каждая АО представляет собой волновую функцию. Она описывается собственным набором квантовых чисел и для атома водорода может быть выражена математической функцией. Атом каждого элемента обладает орбиталями лишь определенного типа и числа. [c.44]

    В молекуле ацетилена jHj атом углерода (sp-гибридизация) нахо дится в линейном (дигональном) окружении и образует одну а-связь С—Н и одну а,я,л-связь С С (рис. 42). Одна sp-гибридная атомная орбиталь углерода перекрывается с Is-AO водорода и формируется а-связь С—Н. Вторая sp-гибридная орбиталь одного атома углерода и такая же орбиталь второго атома углерода образует а-составлягощую, а негибрндные р-орбитали тех же атомов —две я-составляющие тройной связи С = С. [c.127]

    Наконец, последнее замечание. Подобно тому как были получены две низщие МО при помощи 15-орбиталей атомов А и В, можно также построить и другие молекулярные орбитали, выбирая в качестве фл и -фв атомные орбитали 2х, 2рх,. ... Эти МО соответствуют возбужденным состояниям, часть из которых устойчива, а часть — нет молекула Н , находящаяся в неустойчивом состоянии, диссоциирует на протон и возбужденный атом водорода, находящийся в состоянии 2з или 2рх и т. д., но не в основном -состоянии. Каждый возможный выбор грл приводит к двум МО, одна из которых симметрична, а другая — антисимметрична относительно центра молекулы. [c.102]


Смотреть страницы где упоминается термин Атомные орбитали атома водорода: [c.47]    [c.40]    [c.40]    [c.40]    [c.19]    [c.57]    [c.149]    [c.309]    [c.68]    [c.113]    [c.166]   
Физическая химия. Т.1 (1980) -- [ c.477 , c.479 ]




ПОИСК





Смотрите так же термины и статьи:

Водород атомный

Орбитали атома водорода

Орбиталь атомная

Орбиталь водорода



© 2025 chem21.info Реклама на сайте