Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Графический числа тарелок

    Методы определения числа тарелок Л/т по числу ступеней изменения концентрации Л/о д.ля заданных условий перегонки теоретически не разработаны. Обычно число тарелок находят путем деления найденного графически числа ступеней изменения концентрации на к.п.д. тарелки fiT- [c.487]

    Горизонтальные прямые А=1, В=2, С=3ит. д. показывают характер изменения состава жидкости на тарелках, а вертикальные прямые 1=В, 2=С, 3=0 и т. д. дают характер изменения состава паров на тарелке. Таким образом каждый уступ представляет графически одну тарелку, а общее число уступов дает теоретически необходимое количество тарелок. [c.78]


    Каждый парциальный конденсатор, так же как и каждый кипятильник, соответствует одной теоретической тарелке. Поэтому число теоретических тарелок в колонне будет при наличии конденсатора и кипятильника на две меньше, чем следует из графического построения. [c.114]

    Идя таким образом от тарелки к тарелке, можно аналитически подсчитать необходимое число нх для получения азота любой чистоты. Однако вследствие длительности вычислений этот метод подсчета отнимает много времени, поэтому применим здесь графический метод подсчета числа тарелок. [c.356]

    Число теоретических ступеней контакта, или число теоретических тарелок, может быть найдено аналитически или графически, совместным решением уравнений равновесия и рабочей линии процесса. Одна теоретическая тарелка выражает одно изменение движуш,ей силы по газовой Аг/ и одно по жидкой Дл фазам, причем число теоретических тарелок и движущая сила процесса находятся в обратном соотношении, т. е. чем больше движущая сила (больше отрезки Ау и Ах), тем меньше потребуется теоретических тарелок для данного разделения. [c.226]

    При 0=0 и = 0 оперативные линии обеих частей колонны совпадают с прямой, проведенной иод углом 45 . Такой режим работы колонны известен под названием полный возврат флегмы или бесконечное орошение. При этом на каждой тарелке колонны достигается максимально возможное разделение. В колонне, работающей в режиме бесконечного орошения, высокая степень разделения достигается при минимальном числе тарелок. Этот режим и способ определения числа тарелок графически изображен на рис. 80, б. [c.146]

    Зная 1>о, находят по формуле (17-45) Е, представляющий собой в данном случае коэффициент обогащения, т. е. отношение изменения молярной концентрации НК на тарелке к изменению молярной концентрации этого компонента, необходимому для достижения равновесия между паром и жидкостью на тарелке. Число тарелок определяют графически, как описано на стр. 626. [c.694]

    Число ректификационных тарелок в колонне в основном зависит от требуемой четкости ректификации разности температур кипения разделяемых фракций количества подаваемого в колонну орошения. Число теоретических тарелок в ректификационной колонне определяют обычно графически [1, 6, 8, 9], методом расчета от тарелки к тарелке [6, 8] и эмпирическими методами [8]. Можно подобрать число тарелок в колонне и на основании практических данных. [c.58]

    Графический расчет числа теоретических тарелок в десорбере производится построением ступенчатой линии между равновесной кривой и рабочей линией (см. рис. СТ-В). Точка В, находящаяся на рабочей линии, определяет состав газа на выходе из десорбера. Этот состав газа определяет концентрацию жидкости Х (абсцисса точки /), стекающей с верхней тарелки десорбера. При пересечении с рабочей линией в точке 2 абсцисса Хд, дает состав газа Уд, ,, поднимающегося с нижележащей тарелки. [c.203]


    Графическое определение числа тарелок, приведенное на рпс. 4. 19 и 4. 21, показывает, что концентрация паров и жидкости по высоте колонны изменяется неравномерно. Обычно наиболее значительно изменяется концентрация между двумя смежными тарелками в середине каждой из частей колонны. [c.123]

    В процессе ректификации не достигается полное равновесие на тарелках, как это предполагается при графическом построении ступеней изменения концентрации. Поэтому для определения числа действительных тарелок необходимо установить степень отклонения от равновесия, т. е. найти к. п. д. тарелки. Тогда число действительных тарелок [c.307]

    В наиболее законченном виде метод расчета тарельчатых массообменных аппаратов (ректификационных и абсорбционных), базирующийся на использовании законов массопередачи, дается А. Г. Касаткиным, А. Н. Плановским и О. С. Чеховым [142]. Особенностью этого расчета является графическое определение числа реальных тарелок по числу единиц переноса. Принцип расчета поясним, используя наиболее простой случай, когда коэффициент массопередачи на всех тарелках аппарата одинаков, а уноса жидкости с нижележащих тарелок на вышележащую не происходит. [c.310]

    В случае систем с очень большим числом близкокипящих компонентов часто нет необходимости проводить полное разделение для их характеристики. Так, в случае смесей углеводородов, таких, как бензин, дизельное топливо и другие, достаточно определить, какая часть пробы перегоняется в определенном температурном интервале, например 75—80 °С. Можно также определить температуру, при которой определенный объем пробы находится в виде дистиллята. Поскольку данные такого анализа в значительной степени зависят от условий проведения опыта, необходимо применять стандартную аппаратуру, обслуживая ее строго по инструкции [58, 59]. Принцип фракционной дистилляции в ректификационной колонне заключается в про-тивоточном прохождении части конденсата и поднимающихся вверх паров, между которыми происходит интенсивный обмен. При этом пар обогащается наиболее легколетучим компонентом. Такая колонна в промышленности разделена на отдельные тарелки отсюда вытекает понятие теоретической тарелки. Теоретическая тарелка характеризуется состоянием установившегося равновесия между фазами. Число теоретических тарелок, необходимое для разделения, можно определить графически [58, 60]. [c.382]

    Наиболее прост и нагляден графический метод расчета эффективности, заключающийся в подсчете числа ступенек, укладывающихся на диаграмме равновесий жидкость — пар между точками составов кубовой жидкости и дистиллята. Так, если в результате ректификации, проведенной на исследуемой колонке, кубовая жидкость имеет состав а дистиллят —- (см. рис. V. 18), то эффективность колонны будет равна четырем теоретическим тарелкам. [c.284]

    После определения эффективности тарелки необходимое число тарелок можно найти графическим или аналитическим методом (см. стр. 233 и сл.). [c.598]

    Число тарелок в колонне, обеспечивающее заданное разделение сырья, можно определять различными методами. При всех этих методах приходится переходить от составов равновесных потоков одной тарелки к составам равновесных потоков следующей, соседней тарелки. Переход этот осуществляется поочередным решением (графически или аналитически) уравнений рав новесия и уравнений концентраций, т. е. уравнений- материального баланса. [c.323]

    Если учитывать область изменения концентрации спирта на нижних тарелках выварной части колонны от д п ДО х- , то их число, определяемое графическим способом, увеличится на 3 т. т. [c.68]

    При значительной кривизне равновесной линии и изменяющихся значениях эффективности массопередачи на каждой тарелке расчет числа реальных тарелок выполняют графическим путем при помощи диаграммы у—х. В этом случае ступенчатая линия, характеризующая фактическое изменение концентраций потоков [c.45]

    Методы определения числа тарелок по числу ступеней изменения концентрации Л/ для заданных условий абсорбции (так же, как и для других диффузионных процессов) не разработаны. Обычно число тарелок находят путем деления найденного графическим путем числа ступеней изменения концентрации на так называемый к. п. д. тарелки  [c.509]

    Число теоретич. тарелок м.б. найдено аналитически путем совместного решения ур-ний, описывающих равновесную и рабочую линии процесса, или графически. В последнем случае строятся ступени между рабочей и равновесной линиями в пределах заданных концентраций. Следует иметь в виду, что одна теоретич. тарелка выражает одно изменение движущей силы по газовой Ау и одно по жидкой фазам, причем число теоретич. тарелок и движущая сила процесса находятся в обратном соотношении, т. е. чем больше движущая сила, тем меньше потребуется теоретич. тарелок для заданного разделения. Действительное число тарелок, к-рое необходимо установить в аппарате, определяется [c.657]


    Число теоретических тарелок (ЧТТ) при ректификации бинарных смесей определяют, решая совместно уравнения равновесия фаз, материального и теплового балансов. При этом используется графический метод расчета ЧТТ (метод Мак-Кеба и Тиле), При ректификации многокомпонентных смесей ЧТТ определяется методом от тарелки к тарелке , приближенными (например, по Львову— [c.249]

    Величину т) называют КПД тарелки, эффективностью разделения, коэффициентом обогащения. Числитель в (21.14)—это изменение состава пара на тарелке с номербм I, знаменатель — то же в допущении, что уходящий с тарелки пар равновесен с покидающей ее жидкостью состава х,- (составы пара и жидкости снабжены индексом, обозначающим номер той тарелки, которую они покидают счет тарелок — снизу вверх). При графическом изображении тарелки числителю и знаменателю отвечают отрезки АВ и АС (рис. 21.2). Значение т),- зависит от конструкции тарелки, физических свойств фаз и режима работы (скорости пара, флегмового числа и др.). При небольших изменениях в последнем для данного конкретного аппарата т],- определяется прежде всего физическими свойствами фаз, в особенности жидкости. Поэтому для анализа работы колонны возможно в качестве аппроксимационной зависимости использовать выражение  [c.156]

    Данное условие выдерживается для систем любой сложности, но в случае смесей с числом компонентов больше трех, очевидно, не поддается графическому изображению. Ввиду постоянства флегмового числа фигуративные точки встречных на одном уровне потоков на участке от тарелки питания до ОПК должны лежать в точках пересечения соответствующей оперативной линии с прямыми gfpL и СРрСрр, на которых располагаются и концы коноды характеризующей ОПК° отгонной секции. Это позволяет на пересечении оперативной линии ОСт с прямой gfpL найти фигуративную точку флегмы стекающей с нижней тарелки укрепляющей секции. Следует отметить несовпадение коноды [c.394]

    При ректификации снстем блпзкокнпящих пощестм, характеризующихся сравнительно небольшим коэффициентом относительной летучести а, расчет необходимого числа контактов как путем аналитического перехода от тарелки к тарелке, так и графическим путем весьма затрудняется вследствие очень большого числа отдельных ступеней процесса. [c.212]

    Число теоретических тарелок определяем при совместном решении уравнений равновесия и рабочих линий или графически — по числу точек пересечения рабочей линии с равновесными изотермами, начиная от точки = Хр, лежащей на пограничной кривой пара (см. рис. 39). Линия Ур—Xi дает верхнюю теоретическую тарелку. Далее из x проводим прямую (рабочую) линию в фокус М и получаем точку пересечения у , из точки у изотерму продолжаем до ne )e e4e-ння с пограиичпой кривой жидкости, на которой получаем точку Xg, далее вновь проводим рабочую линию в фокус М. и находим точку пересечения i/з на пограничной кривой пара и т. д. [c.68]

    При расчете процессов азеотропной ректификации важно знать минимальное число тарелок, соответствующее работе колонны с бесконечным флегмовым числом. Этот расчет можно произвести графическими методами. Расчет облегчается тем, что п р, поступающий на произвольную тарелку, имеет такой же состав, как стекающая с нее жидкость. Это обстоятельство [c.236]

    Расчет процесса периодической азеотропной рекгификацин может производиться следующим образом. По заданным составам и количествам начальной смеси и отбираемого дистиллата с помощью уравнений (261) рассчитывается состав кубовой жидкости к концу процесса. По найденному составу кубовой жидкости и известному составу дистиллата с помощью описанных выше методов рассчитывается число тарелок, и флегмовое число, требующееся для достижения заданной степени разделения в конце процесса. Затем для нескольких флегмовых чисел, меньших найденного в предыдущем расчете, по заданному составу дистиллата определяется состав кубовой жидкости, получающейся при ректификации в колонне с найденным для конца процесса числом тарелок. Описанным способом устанавливается зависимость потребного флегмового числа от состава жидкости в кубе. Расчеты могут производиться аналитически ( от тарелки к тарелке ) или описанными выше графическими методами, [c.245]

    На реальных тарелках практически никогда не достигается к. п. д. 100%, что возможно для идеальных тарелок обычно к. п. д. составляет 50—90% . Это вызвано, во-первых, тем, что перемешивание пара и жидкости в большинстве случаев не является совершенным, и, во-вторых, тем, что пар, особенно при больших скоростях, увлекает брызги жидкости на вышележащую тарелку. Кроме того, колонны, как правило, работают не с бесконечным флегмовым числом, а с конечным, так как целью любой ректификации является получение дистиллята. Как показал Аншюц [133], коэффициент полезного действия тарелок может быть учтен при графическом построении теоретических ступеней разделения по методу Мак-Кэба и Тиле. [c.97]

    Рассмотрим часть диаграммы для графического определения числа теоретических ступеней разделения по. методу Мак-Кзба и Тиле (рис. 79). В тарельчатой колонне между жидкостью состава 1/ , находящейся на тарелке, и поднимающимися парами устанавливается термодинамическое равновесие . Концентрация паров, покидающих тарелку, равна Такую же концентрацию (г/а) имеет жидкость, находящаяся на вышележащей тарелке . В паровом пространстве между тарелками (а следовательно, между точками у и у2) массообмен практически не происходит. [c.123]

    Для определения числа теоретических тарелок в нижней части колонны необходимо прежде всего определить состав жидкости Хщ, ностунаюш ей на верхнюю тарелку отгонной части колонны [урав-ненно (4. 17)]. Д1[я нижней части колонны графическое построение числа тарелок производят, начиная с верхней (/) тарелкп, но направлению сверху вниз. [c.131]

    Число теоретических тарелок в абсорбере моисет быть определено графическим построением ступенчатой линии между равновесной кривой ОС и оперативной линией АВ, так же как это выполпялось раньше при расчете ректификационных колопн. На рис. 8. 2 приведено это построение. Точка В, лежащая на оперативной прямой, соответствует неравновесному состоянию газовой и жидкой фаз под нижней тарелкой абсорбера. Очевидно, что в результате контакта лшдкости с газом па нижней (первой) тарелке состав газа определится ординатой точки 1, лежащей на кривой разиювесия фаз. [c.227]

    Число тарелок, необходимых для разделения данной смеси, определяют графически или аналитически. Для графического определения необходимо иметь кривую равновесия фаз и кривые концентраций для верхней и нижней частей колонны. Методика определения числа идеальных контактов, или числа так называемых теоретических тарелок, дана в литературе по расчету массообменных процессов. Под теоретической тарелкой понимают такую, на которой массообменивающиеся фазы приходят к полному равновесию. Это допущение условно. Практически даже на тарелках самой совершенной конструкции невозможно достигнуть полного равновесия фаз, поэтому число реальных тарелок всегда больше числа теоретических  [c.128]

    Определение числа теоретических тарелок. Воспользуемся графическим ме тодом Джиллилэнда (1) и методом расчета от тарелки к тарелке (2)  [c.375]

    Для расчета И через число ступеней в аппаратах со ступенчатым контактом необходимое число ступеней определяется аналитическими и графическими методами. До недавнего времени обычно пользовались методами, оспоианными на понятии о теоретической ступени изменения концентрации, или о теоретической тарелке. Такая ступень, или тарелка, соответствует некоторому гипотетическому участку аппарата, на котором жидкость полностью перемешивается, а концентрации удаляющихся фаз (например, жидкости и газа) являются равновес-н ы м п. Методу теоретических ступеней (тарелок) присущи серьезные недостатки (см. ниже), и обоснованный переход от теоретических к действительным тарелкам затруднителен. В связи с этим разработаны более совершенные методы, позволяющие определить аналитически или графически непосредственно число действительных ступеней (тарелок) аппарата. [c.425]

    Рассмотрим часть диаграммы для графического определения числа теоретических тарелок по методу Мак-Кэба и Тиле (рис. 86). Верхняя линия представляет собой кривую равновесия а, нижняя — рабочую линию Ь. В тарельчатой колонне между жидкостью с концентрацией / , находящейся на любой тарелке, и поднимающимися парами наступает термодинамическое равновесие. Пары, покидающие тарелку, имеют концентрацию у. Этой же концентрацией обладает и жидкость на вышерасположенной тарелке г/. . Между тарелками (т. е. между точками и у ) никакого обмена не происходит. Иначе обстоит дело в насадочной колонне, где изменение концентрации в каждом слое между у и у пропорционально у —у. Только в случае, когда кривая равновесия и рабочая линия параллельны друг другу (рис. 86, II), число единиц переноса Па совпадает с числом теоретических тарелок поскольку в рассматриваемой области концентраций разность у —у остается постоянной. Такой случай имеет место в идеальных растворах с малой разностью температур кипения, исполь- [c.141]

    Число тарелок в сивушной колонне. По аналогии с расчетом числа тарелок в эпюрационной колонне расчет числа тарелок в укрепляющей части сивушной колонны производится графическим способом при флегмовом числе, равном бесконечности. При этом рабочая линия укрепляющей части колонны совпадает с диагональю диаграммы х = у. Концентрация спирта на питательной тарелке принимается равной средней концентрации его в сивушной фракции, поступающей в колонну. При составлении материального баланса ректификационной колонны принято, что из паоовой фазы отбирается, сивушная фракция крепостью 50% вес., из жидкой фазы — крепостью 60% вес. Эти фракции объединяются и направляются в сивушную колонну. Средняя концентрация этой фракции по данным материального баланса составляет (17,76 28,12 + 9,88 36,98) 27,64 = 31,2% мол (28,12 и 36,98 концентрация спирта в сивушных фрак циях, отбираемых из паровой и жидкой фазы, в % мол.) [c.82]

    Графический метод определения числа тарелок на основе общих положений массопередачи. Изложенный выше графический метод определения числа тарелок тарельчатых диффузионных аппаратов имеет существенный недостаток. Для перехода от числ 1 ступеней изменения концентрации к числу тарелок необходимо знать либо числовое значение к. п. д. тарелки, либо число тарелок, эквивалентное одной ступени изме- нёния концентрации, однако и то и другое обычно неизвестно. Кроме того, не учитываются кинетические зависимости, описываемые общими уравнениями массопередачи. [c.510]


Смотреть страницы где упоминается термин Графический числа тарелок: [c.180]    [c.144]    [c.199]    [c.150]    [c.184]    [c.110]    [c.443]    [c.58]    [c.63]    [c.513]    [c.231]    [c.231]   
Процессы химической технологии (1958) -- [ c.714 ]




ПОИСК





Смотрите так же термины и статьи:

Число графический



© 2024 chem21.info Реклама на сайте