Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

сплавы цирконий чугун

    Данные о коррозионной стойкости различных металлов и сплавов, а также неметаллических покрытий в водных растворах формальдегида [34, 35] приведены в Приложении 1. Для сравнения там помещены соответствующие данные для растворов муравьиной кислоты, не содержащих формальдегид, а также сведения о коррозионной агрессивности метанола. Как следует из сопоставления таблиц Приложения I, достаточно стойкими к воздействию растворов формальдегида при нормальной и повышенной температуре являются такие металлы, как чистое железо и алюминий, медь, никель, свинец, серебро, тантал, титан и др. Многие из этих металлов, а также платина, ниобий и цирконий мало подвержены коррозии и в присутствии значительных количеств муравьиной кислоты. Однако большинство перечисленных материалов либо слишком дефицитны, либо по физико-механическим свойствам непригодны для изготовления производственной аппаратуры. Из числа конструкционных материалов, применяющихся на практике, достаточно стойки по отношению к формалиновым растворам, в особенности при повышенной температуре, далеко не все. С учетом практической неизбежности накопления хотя бы небольших количеств муравьиной кислоты, непригодны для работы в формалиновых средах, помимо углеродистых сталей, хромистые сплавы, а также некоторые марки алюминия, бронзы, латуни, чугуна и т. д. Напомним, что в соответствии с действующим ГОСТом по коррозионной стойкости металлы разделяются на шесть групп и оцениваются по десятибалльной шкале, причем при скорости коррозии выше 0,1 мм/год материал считается пониженно стойким. [c.30]


    Применение элементов подгруппы титана. Титан вдвое легче стали, а титановые сплавы в. 3 раза прочнее алюминиевых, в 5 раз прочнее магниевых сплавов и превосходят некоторые специальные стали, в то время как их плотность значительно меньше, чем последних. Поэтому титан и сплавы на его основе широко используются в авиа- и судостроении, космической технике. Кроме того, титан и цирконий используются как в качестве легирующих добавок к черным и цветным сплавам, так и в качестве основы конструкционных материалов, способных работать в экстремальных условиях. Для легирования сталей и модифицирования чугунов обычно используют ферротитан и ферроцирконий (сплавы с железом, содержащие 20—40% Ti или Zr). Добавка к стали уже 0,1% Ti способствует повышению ее твердости и эластичности. Такая сталь идет на изготовление рельсов, вагонных осей и т. п. Добавки циркония в таком же количестве резко повышают вязкость стали (броневые плиты). [c.244]

    Сталь, алюминий и его сплавы, магний оксидированный, олово, свинец,серебро, молибден, цирконий Сталь, чугун, алюминий и его сплавы, никель, свинец, олово, хромовые, никелевые, цинковые и кадмиевые покрытия Сталь, чугун, в том числе с покрытиями, алюминий и его сплавы, магний и его сплавы, цинк, кадмий, медь и ее сплавы, олово, серебро, молибден, цирконий Сталь, медь и ее сплавы, хром, никель, свинец, кадмий, цинк, серебро, нейзильбер [c.110]

    Лантаноиды используют в производстве чугуна и высококачественных сталей. Введение этих элементов в чугун в виде ферроцерия (сплав церия с железом) или сплава различных лантаноидов повышает прочность чугуна. Небольшие добавки лантаноидов к стали очищают ее от серы, азота и других примесей, так как лантаноиды, являясь химически активными металлами, взаимодействуют с примесями. При этом повышаются прочность, жаропрочность и коррозионная устойчивость сталей. Такие стали пригодны для изготовления деталей сверхзвуковых самолетов, оболочек искусственных спутников Земли. С помощью лантаноидов получают также жаропрочные сплавы легких металлов — магния и алюминия. Благодаря сплавам лантаноидов проводят металлотермическое восстановление многих металлов (титана, ванадия, циркония, ниобия, тантала и др.), используя в этом процессе большое сродство лантаноидов к кислороду. [c.446]

    С. можно классифицировать 1) по числу компонентов — па двойные, тройные, четверные и т. д. 2) по структуре — на гомогенные (однофазные) системы и гетерогенные (смеси), состоящие из нескольких фаз последние могут быть стабильными (в равновесных С.) и метастабильными (в неравновесных С.) 3) по характеру металла, являющегося основой С., — на черные — сталь, чугун (см. Железа сплавы), цветные — на основе цветных металлов (см. Алюминия сплавы. Меди сплавы, Никеля сплавы и т. д.), С. редких металлов (см. Вольфрама сплавы, Молибдена сплавы. Ниобия сплавы, Циркония сплавы и др.), С. радиоактивных металлов — на основе урана и плутония 4) по характерным свойствам — на тугоплавкие, легкоплавкие, высокопрочные, жаропрочные,твердые, антифрикционные, коррозионноустойчивые, износостойкие, проводниковые, с высоким электросопротивлением, магнитные и др. 5) по технологич. признакам — на литейные (для изготовления деталей методом литья) и деформируемые (подвергаемые ковке, штамповке, прокатке, протяжке, прессованию и др. видам обработки давлением). [c.502]


    Анализ сплавов и чугуна [95]. Голубцова [95] рекомендует при определении вольфрама в сталях (0,96—8,78% W), чугунах (2,21—5,06 W), в сплавах, содержащих титан (1,16—6,00 W), цирконий (3,02—6,30% W), ниобий (2,51—10,12% W), пользоваться риванолом. Определению вольфрама не мешают большие количества Ti, Zr, V, r, Ni, Со, Fe(II, III), Zn, e, Be, Nd, Mn, Mo. [c.88]

    Значительно чаще применяют металлические сплавы на основе железа (сталь и чугун), алюминия, магния, меди (бронза и латунь), никеля, ниобия, титана, тантала, циркония и других металлов. [c.175]

    Черные металлы — чугун и сталь, занимая исключительно важное место в промышленности и технике, часто служат объектом анализа. Число элементов, которое может находиться в железных сплавах, очень велико, чем и определяется большое разнообразие их физико-механических и химических свойств. Наряду с давно применяемыми легирующими элементами (такими, как хром, никель, кобальт, ванадий, вольфрам), в практику черной металлургии и в последние десятилетия вошли новые компоненты (например, редкоземельные, цирконий, гафний, титан, тантал, ниобий), добавки которых позволяют получать черные металлы с еще более ценными качествами. Кроме того, растет внимание и к ряду элементов, присутствие которых даже в малых количествах, может существенно изменять качество металла. Сюда относятся мышьяк, медь, олово, сурьма, алюминий, цинк и др. Содержание этих компонентов также контролируется, особенно в высококачественных сталях. [c.473]

    Метод применен для определения SOj в воздухе [876, 878, 1145, 1414], следовых количеств (10 — 10 %) серы в металлах и сплавах [647], рафинированной меди [570, 1207], чугуне [478], соединениях урана и циркония [1040], общего содержания серы в почвах [6171, минеральных маслах [1288] и органических соединениях [720, 12881. В случае определения серы в неорганических материалах рекомендуется [721] разложение навески сплавлением с V,0,. [c.127]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]

    Неорганические разделительные слои. Окисные разделительные слои образуются самопроизвольно на ряде металлов серебре, золоте, никеле, хроме, титане, алюминии, цирконии, молибдене, кремнистом чугуне. Эти металлы часто используют для нанесения на поверхность форм из сталей, алюминиевых и цинковых сплавов, меди. Так, медь покрывают никелем или серебром. [c.36]

    Однако значительно чаще используют металлические сплавы на основе железа (сталь и чугун), алюминия, магния, меди (бронза, латунь), никеля, ниобия, титана, тантала, циркония и других металлов. Практически все переходные металлы и лантаноиды, а также многие непереходные металлы выступают в качестве компонентов подобных сплавов. Отметим, что если металлы и сплавы в ряде случаев и уступают свои позиции неметаллическим материалам, то это связано в первую очередь с их коррозией, т. е. химическим разрушением под действием окружающей среды. Строго говоря, коррозии подвергаются и любые неметаллические материалы (например, полимеры, керамика и стекла), однако чаще всего говорят о коррозии металлов, так как она наносит максимальней вред из-за относительно высокой скорости этого процесса, значительной стоимости металлических конструкций и ограниченности природных ресурсов металлов. Отметим, что каждая шестая домна в нашей стране работает, чтобы возместить прямые потери металлов от коррозии. [c.136]


    Азотнокислотный гравиметрический метод. Применяют при анализе алюминиевых сплавов с высоким содержанием кремния (силумин), а также чугунов и сталей, содержащих не более 10 % Сг и не содержащих вольфрама, титана, циркония и ниобия. Азотная кислота способствует быстрому окислению навески при растворении образца и разрушению карбидов. [c.335]

    КАРБИДЫ — соединения металлов или неметаллов с углеродом. К.— тугоплавкие твердые вещества, нерастворимые ни в одном из известных растворителей. Наиболее распространенный метод получения К- заключается в нагревании до температуры около 2000 С смеси соответствующего металла или его оксида с углем в атмосфере инертного или восстановительного газа. Преобладающее большинство К. (карбид бора В4С, кремния Si , титана Ti , вольфрама W , циркония Zr и др.) очень твердые, жаропрочные, химически инертные. К. применяют в производстве чугунов и сталей, различных сплавов современной техники, используют в качестве абразивных материалов, восстановителей, рас-кислителей, катализаторов и др. К. вольфрама и титана входят в состав твердых и жаропрочных сплавов, из которых изготовляют режущий и буровой инструменты из К. кремния (карборунд) изготовляют шлифовальные круги и другие абразивы К. железа Feg (цементит) входит в состав чугунов и сталей К. кальция применяется в производстве ацетилена, цианамида кальция и др. К. используют как материалы для электрических контактов, разрядников и многого др. (см. Кальция карбид. Карборунд). [c.119]

    Титаноалюминиевые сплавы (-3% А1 -6% А1) Цинк Цирконий Чугуны серый [c.1127]

    Железо, титан, цирконий и многие сплавы на их основе способны пассивироваться в концентрированной азотной кислоте, но при концеитрации кислоты >95% нержавеющие стали иногда склонны к иереиассивации, ирн которой разрушается за-п итпая пленка и окисление сталей ускоряется. Коррозионная активность кислоты возрастает ири наличии в растворе ионов хлора особенно важно иметь это в виду для материалов, пассивирующихся в чистой азотной кислоте. Алюминий рекомендуется для концентраций кислоты <1% и >80%. Титан и цирконий ие рекомендуются для дымящей азотной кислоты, о этом случае возможно образование пирофорных продуктов реакции, чувствительных к удару, т. е. реакция может протекать со взрывом. Медь и свинец нестойки в растворах азотной кислоты, так как в результате нх реакции с кислотой образуются легкорастворимые вещества. Для эксплуатации при нормальной температуре рекомендуется аппаратура из хромистого чугуна. Необходнмо учитывать возможность [c.807]

    Полярографические методы с применением ртутного капающего электрода широко применяются для определения Sb в различных промышленных и природных материалах, в том числе в железе, чугуне и сталях [503, 823, 1037, 1216, 1264, 1309, 1478, 1574], полупроводниковых материалах [123, 343, 344, 451, 680, 720, 721, 1071], свинце и его сплавах [130, 142, 144, 148, 154, 220, 230, 246], рудах и концентратах [204, 1036, 1635], цицке и его солях [67, 416, 418, 420], цинковых электролитах [417], титане и его соединениях [822, 823, 1174, 1548], меди [1672], олове [1201], молибдене [644], кадмии [1584], цирконии и его сплавах [823], типографских сплавах [763, 820], ферромарганце [1352], манга- [c.64]

    Металлический магний впервые был получен А. Бюсси в 1828 г. Важнейшим способом получения металлического магния служит электролиз расплавленного карналлита или хлорида магния. Металлический магний имеет важное значение для народного хозяйства. Он идет на изготовление сверхлегких магниевых сплавов, применяемых главным образом в авиации и ракетной технике, а также входит как легируюш ий компонент в алюминиевые сплавы. Магний применяют в качестве восстановителя при магниетермическом получении металлов (титана, циркония и др.), в производстве высокопрочного магниевого чугуна с включенным графитом. Большое значение имеют многие соединения магния окись, карбонат, сульфат и другие, используемые при изготовлении огнеупоров, цементов и прочих строительных материалов. [c.7]

    Колориметрическое определение олова в металлическом свинце с помощью фепилфлуорона основано на предварительном экстракционном выделении олова купфероном [233]. Описан вариант, по которому определение олова в цинке и свинце заканчивают фотометрированием его комплекса с пироллидиндитиокарбами-натом в четыреххлористом углероде [234]. Колориметрическое определение алюминия, бериллия, магния и урана в сплавах на основе циркония основано на предварительном экстракционном отделении циркония в виде купфероната [235]. Определение титана в металлическом бериллии с помощью тимола включает экстракцию купфероната титана [236]. Вместе с тем известен метод, основанный на непосредственном определении титана фотометрированием его купфероната, извлеченного 4-метилпентано-пом. Метод применен для определения титана в чугуне, стали, глине и никелевых сплавах [237], [c.246]

    КИСЛОТОСТОЙКИЕ МАТЕРИАЛЫ — материалы, отличающиеся повышенной кислотостойкостью, вид химически стойких материалов. В пром. масштабах используются с середины 18 в. Различают К. м. металлические и неметаллические. К металлическим К. м. относятся сплавы на основе железа, а также цветные металлы и их сплавы (см. также Кислотостойкие сплавы). Кислотостойкие сплавы на основе железа углеродистые стам (нелегированные, низколегированные), содержащие до 1% С высоколегированные стали, имеющие в своем составе хром, никель, медь, марганец, титан и др. хим. элементы чугуны (нелегированные, высоколегированные), содержащие более 2,5—2,8% С. Кислотостойкие цветные металлы никель, медь, алюминий, титан, цирконий, олово, свинец, серебро, ниобий, тантал, золото, платина и др. Углеродистые стали стойки в растворах холодной азотной к-ты (концентрация 80—95%), серной к-ты (выше 65%) до т-ры 80° С, в плавиковой к-те (выше 65%), а также в смесях азотной и серной к-т. На углеродистые стали сильно действуют органические к-ты (адипиновая, муравьиная, карболовая, уксусная, щавелевая), особенно с повышением их т-ры. Высоколегированные стали, отличаясь повышенной стойкостью к коррозии металлов (см. также Коррозионностойкие материалы), являются в то же время кислотостойкими. Большинство легирующих добавок значительно повышают кислотостойкость сталей. Так, медь придает хромоникелевым сталям повышенную стойкость к серной к-те. Сталь с 17—19% Сг, 8-10% Мп, 0,75-1% Си, 0,1% С и 0,2—0,5% Si стойка в азотной к-те (любой концентрации и т-ры вплоть до т-ры кипения) и многих др. хим. соединениях (см. Кислотостойкая сталь). Кислотостойки высоколегированные чугуны никелевые, хромистые (см. Хромистый чугун), алюминиевые (см. Чугалъ), высококремнистые (ферросилиды), хромоникель-медистые (см. Нирезист), хромони-келькремнистые (никросилал). Наиболее распространены ферросилиды [c.586]

    КОРРОЗИОННОСТОЙКИЕ МАТЕРИА л Ы — материалы, отличающиеся повышенной коррозионной стойкостью. Различают К. ы. конструкционные (металлические, неметаллические, композиционные), используемые для изготовления конструкций, и защитные, предохраняющие металлические сооружения от коррозии. Материалы, обладающие повышенной хим. стойкостью к активным газовым средам при повышенных т-рах, обычно выделяют в разряд жаростойких материалов (см. также Коррозия металлов. Коррозия бетона, Защитные покрытия). К м е т а л л и ч е с к и м К. м. относятся стали, чугуны, сплавы на основе никеля, меди (бронзы, латуни), алюминия, титана, циркония, тантала, ниобия и др. Их стойкость против электрохимической коррозии в принципе можно повышать увеличением термодинамической стабильности или торможением катодного и анодного нроцессов. На практике повышения коррозионной стойкости технических сплавов обычно добиваются легированием, тормозящим анодный процесс, т. е. улучшающим пассивационные характеристики (см. Пассивирование), обусловливая возможность самопассивиро-вания сплава в условиях эксплуатации. Наиболее легко пассивируются хром и титан. Повышенная способность хрома к пассивации нри его введении в менее пассивирующиеся металлы, напр, железо, может передаваться сплаву. На этом принципе основано получение нержавеющих сталей. Чем больше введено хрома, тем выше коррозионная стойкость [c.625]

    Благодаря большому химическому сродству к кислороду магний применяют в качестве раскислителя в производстве стали и цветных сплавов, а также для получения трудно восстановимых металлов (титана, циркония, ванадия, урана и др.) путем вытеснения их из соединений. Магний используют также для получения высокопрочного модифициро-ваииого чугуиа. Для этой цели его вводят в количестве 0,3—1,2 % в расплавленный чугун. [c.105]

    В металлургии этот элемент используют для раскисления стали, модифицирования чугуна. Его вводят в качестве легирующей добавки в специальные стали (нержавеющие, жаропрочные) в виде ферросилико-циркоиия (40—45 % 2г 20—24 % 8 , остальное железо). Кроме того, цирконий входит в состав цветных сплавов на основе магния, титана, меди, никеля, свинца н др., куда его добавляют для повышения механических и других специальных свойств. [c.259]

    Высокой стойкостью во влажном и сухом дихлорэтане обладают никель и сплавы на его основе, титан, тантал, цирконий, кремнистый чугун и др. Никелем плакируют стальные насосы и арматуру, а никелемедные сплавы служат конструкционным материалом для аппаратуры, используемой для дистилляции дихлорэтана Б экстракционных процессах [2]. Никелемолибденовые и никелехромомолибденовые сплавы, стойкие не только в сухом и влажном дихлорэтане, но и при наличии в нем небольших примесей соляной кислоты, используются для изготовления насосов перекачки кислого продукта. Насосы из кремнистого чугуна широко используются для перекачки кислого дихлорэтана [2]. [c.71]


Библиография для сплавы цирконий чугун: [c.833]    [c.72]    [c.639]   
Смотреть страницы где упоминается термин сплавы цирконий чугун: [c.417]    [c.851]    [c.151]    [c.807]    [c.851]    [c.152]    [c.519]    [c.629]    [c.685]    [c.689]    [c.691]    [c.728]    [c.815]    [c.832]    [c.836]    [c.293]    [c.401]    [c.686]   
Коррозия металлов Книга 1,2 (1952) -- [ c.98 , c.100 ]




ПОИСК





Смотрите так же термины и статьи:

Сплавы с цирконием

Чугунные

Чугуны



© 2025 chem21.info Реклама на сайте