Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Трутона константы и правило

    Все же следует иметь в виду, что константа Тритона не есть универсальная постоянная. Полярные жидкости (вода, спирт и др.) сильно отклоняются от правила Трутона, и константа К для них бывает гораздо меньше 21. [c.101]

    Предполагали, что заниженную величину константы Этвеша и завышенную—константы Трутона можно объяснить ассоциацией . Дело в том, что для констант получаются нормальные значения, если ввести в уравнения величину молекулярного веса, большую, чем соответствующую формуле вещества. На основании этого далее высказывалось предположение, что по отклонению от правил Трутона и Этвеша можно судить о молекулярном состоянии жидких веществ. Правда, в этом случае быстро была признана безнадежность расчета степени ассоциации . Наши представления об ассоциации в жидкости и без того довольно расплывчаты и гипотетичны. Понятие о степени ассоциации только тогда имеет определенное значение, когда внутри данной фазы образуются группы молекул, состоящие из двух или большего числа молекУЛ и являющиеся такими самостоятельными образованиями, которые УСТОЙЧИВЫ в течение длительного времени. Последнее происходит чаще всего в растворе, но не в чистой жидкости. В чистой жидкости молекулы независимо от наличия или отсутствия ассоциации плотно упакованы вследствие наличия сил притяжения. Силы притяжения могут быть самого разнообразного вида в зависимости от характера функциональных групп молекул, но ни в коем случае не различаются по порядку величины, ПОТОМУ что во всех жидкостях подвижность молекул, измеряемая внутренним трением, велика, и поэтому работа, необходимая для смещения мельчайших частичек, сравнительно мала. В общем в чистой жидкости невозможно найти такую группу молекул, которая не разрывалась бы смещением частичек при внутреннем трении. [c.238]


    Зто правило лучше всего выполняется в случае неполярных молекул, форма которых приближается к сферической. Значительные отклонения наблюдаются тогда, когда молекулы жидкости ассоциированы химически (например, карбоновые кислоты), обладают полярностью (например, диметилсульфоксид) или формой, резко отличающейся от сферической (например, при переводе от неопентана к -пентану). Константы Трутона сильно ассоциированных растворителей (например, НР, НгО, МНз, спиртов, карбоновых кислот) превышают среднее значение 58 Дж-моль -К , характерное для неассоциированных растворителей типа диэтилового эфира и бензола. [c.94]

    В ассоциации жидкой уксусной кислоты можно убедиться по ее высокой температуре кипения, не соответствующей ее мономолекулярной форме, по ее отступлению от правила Трутона, по вязкости, по поверхностному натяжению и по ряду других физических констант. [c.11]

    На НФ сквалан на стеклянных гранулах измерены коэфф. активности (v) этанола, экстраполированные к нулевой конц-ции. Выведено ур-ние для нахождения равновесного давления пара мономерного этанола и определены теплоты его испарения. Показано, что правило Трутона, непригодное для смеси полимерного и мономерного этанолов, справедливо для мономерного спирта. Выведено ур-пие, позволяющее рассчитывать константу равновесия реакции димеризации в жидкой фазе спирта из v. [c.127]

    Среди различных методов сравнительного расчета термодинамических параметров химических реакцйй и других процессов своеобразное место занимают методы, основанные на сопоставлении этих процессов не при одинаковой температуре, а в условиях, от-вечаюпгих одинаковым значениям их констант равновесия (или, в более общей форме, одинаковым значениям AG°IT = — R In К). Сюда относятся, например, процессы испарения жидкостей при температурах кипения их при атмосферном (или другом одинаковом) давлении, процессы термической диссоциации карбонатов при температурах их разложения при атмосферном (или другом одинаковом) давлении, термической диссоциации окислов и других соединений (в форме гетерогенных или гомогенных процессов), сопоставление стойкости разных кристаллогидратов при заданной влажности воздуха и др. Первым в хронологическом отношении обобщением в этой области, нашедшим широкое применение, явилось известное правило Трутона, относящееся к процессам испарения жидкостей. Ле Шателье и Матиньон обнаружили, что аналогичная закономерность имеет место и для процессов термической дуссоциации кристаллогидратов солей, аммиакатов, карбонатов и других веществ при температурах, при которых давление диссоциации их равно 1 атм. Равновесное изменение энтропии в этих условиях оказывается равным примерно 32 кал/(К-моль). То же можно вывести из формулы Нернста, устанавливая при этом некоторую зависимость величины АН°/Т от температуры, при которой давление диссоциации в данном процессе равно 1 атм. Далее было показаночто приближенное постоянство равновесных изменений энтропии имеет место и при других химических реакциях, если сопоставление ограничивать реакциями, достаточно однотипными, причем такая закономерность наблюдается не только для условий, когда константа равновесия равна единице, но и когда она при другом численном значении одинакова для этих реакций. [c.185]


    Однако исследования показали, что вещества с высокими и низкими температурами кипения, а также вещества, склонные к ассоциации молекул, обнаруживают отклонение от правила Трутона. Так, если молекулы ассоциированы только в жидком состоянии, то отношение теплоты испарения к температуре кипения больше константы Трутона, но если молекулы ассоциированы и в парообразном состоянии, тогда это отношение меньше константы Трутона. Поэтому для замены формулы Трутона был предложен целый ряд эмпирических выражений (Нернстом, Грю-найзеном, Кистяковским, Мортимером и др.). Более точное правило предложено Гильденбрандом. В соответствии с этим правилом [c.124]

    Теплоты образования соединений элементов главной подгруппы III группы, если их отнести к эквивалентным количествам, лежат значительно ниже теплот образования соединений элементов главных подгрупп I и II групп. Отчасти это обусловлено значительно возросшей работой отрыва электронов (см. табл. 63). Однако ее повышение у соединений бора и алюминия приблизительно компенсируется увеянчением энергии взаимодействия ионов в кристаллической решетке. Для уменьшения теплоты образования, приходящейся на 1 г-аке, в рядах Li — Be — В и Na —Mg—Al существенное значение имеет значительное повышение в этом же направлении теплоты сублимации. Последняя, однако, для большинства этих элементов непосредственно еще не измерена. То, что от Li и В и от Na к А1 она существенно возрастает, следует на основании правила Трутона из значительного повышения температур кипения. Правило Трутона гласит, что для высококипящих веществ молярная теплота испарения К изменяется приблизительно так же, как и абсолютная температура кипения Tg. Отношение XITs (константа Трутона) составляет обычно около 21,5. Можно поэтому получать приблизительные значения теплот испарения веществ в калориях путем умножения абсолютной температуры кипения на 21,5. Для алюминия рассчитанная таким образом теплота испарения равна 2543 х 21,5 55 ООО кал г-атом. Для алюминия непосредственно измерена и теплота плавления она составляет 92 ал/г=2500 кал г-атом. Сложением теплот плавления и испарения можно получйть приблизительное значение теплоты сублимации.  [c.359]

    При рассмотрении молекулярной структуры указывалось на невозможное использования для выявления структуры некоторых конститущюнных данных, например парахора это доказывает, что перекись водорода ассоциирована. Кроме того, имеется еще другое доказательство в пользу ассоциации. По мнению Мааса и Хэтчера 1108], низкое значение константы Рамзея—Этве-са—Шилдса (зависящей от поверхностного натяжения и плотности) показывает, что перекись водорода ассоциирована примерно в таких же размерах, как и вода. Правило Трутона позволяет сделать несколько более количественные выводы. В соответствии с этим энтропия парообразования прп нормальной температуре кипения для большинства веществ равна 21 кшл мол-град. 1. Высокие значения для перекиси водорода (26,6) и воды (26,1) доказывают, что эти вещества обладают в жидком состоянии некоторыми дополнительными силами притяжения между молекулами, которых нет у других веществ. Как перекись водорода, так и вода в парах не ассоциированы, а поэтому их состояния в парах такие же (если не считать различий в объеме), как и состояния тех веществ, для которых определено нормальное значение константы Трутона. Эта дополнительная упорядоченность или ограничение совершенно неупорядоченного движения в жидкой воде и жидкой перекиси водорода обусловлено связыванием групп молекул за счет водородных связей. Таким образом, силы, связывающие молекулы друг с другом в жидком состоянии, в среднем имеют большую величину, что приводит к увеличению плотности, поверхностного натяжения и энергии, необходимой для парообразования. Это иллюстрируется также высокой диэлектрической проницаемостью перекиси водорода. Диэлектрическая проницаемость пропорциональна квадрату дипольного момента следовательно, если молекулы связываются вместе таким образом, что дипольные моменты агрегатов оказываются увеличенными, то эффект связывания должен увеличить диэлектрическую проницаемость, несмотря даже на снижение общего числа диполей. Расчеты Паулинга 1341 показывают, что диэлектрическая проницаемость перекиси водорода при комнатной температуре в отсутствие ассоциации должна была бы лежать в интервале от 10 до 20, фактическая же ее величина находится около 80. [c.290]

    Существует ряд эмпирических правил для оценки величин теплот испарения. По правилу Трутона, молярная теплота испарения в точке кипения для многих жидкостей приблизительно равна произведению числа 20,7 на температуру кипения жидкости в градусах Кельвина. Это правило выполняется вполне удовлетворительно для жидкостей, у которых межмолекулярные силы принадлежат к типу простых ван-дер-ваальсовских сил. Если энергия, связанная с межмолекуляр-ными силами, увеличивается за счет дипольных взаимодействий, как это имеет место в полярных жидкостях, или от присутствия водородных связей, как в жидкостях, содержащих группы ОН или КН, то ДЯ испарения становится значительно больше величины, вычисленной по правилу Трутона. Так, трутоновская константа для воды равна 26,0. [c.25]


    Среди различных методов сравнительного расчета термодинамических параметров химических реакций и других процессов своеобразное место занимают методы, основанные на сопоставлении этих процессов не при одинаковой температуре, а в условиях, отвечающих одинаковым значениям- их констант равновесия (или, в более общей форме, одинаковым значениям АО° Т = —, 1п/С). Сюда относятся, например, процессы испарения жидкостей при температурах кипения их при атмосферном (или другом одинаковом) давлении, процессы термической диссоциации карбонатов при температурах их разложения при атмосферном (или другом одинаковом) давлении, термической диссоциации окислов и других соединений (в форме гетерогенных или гомогенных процессов), сопоставление стойкости разных кристаллогидратов при заданной влажности воздуха и др. Первым в хронологическом отношении обобщением в этой области, нашедшим широкое применение, явилось известное правило Трутона, относ5 щееся к процессам испарения жидкостей. Ле Шателье и Матиньон обнаружили, что аналогичная закономерность имеет место и для процессов термической [c.187]

    Ассоциация молекул воды за счет водородных связей. Уже давно предполагалось, что аномалии в физических свойствах воды вызваны тем, что молекулы этой жидкости ассоциируются, т. е. соединяются между собой слабыми силами притяжения. Однако эти силы притяжения все же заметно больше, чем вандерваальсовы силы, действующие в молекулах обычных жидкостей (стр. 145). На это же указывает и отклонение от правила Трутона (стр. 142). Эта константа воды необычно велика (25,9) по сравнению с константами жидкостей с неассоциироваиными молекулами (21,5). Молекулярный вес воды, растворенной в органических веществах, определенный криоскопическим методом, имеет более высокое значение, чем то, которое соответствует формуле НгО М = 18), что также указывает на ассоциацию, т. е. на существование молекул (НгО)г, (НгО)з и т. д., находящихся в равновесии друг с другом и с молекулами НгО. В газообразном состоянии молекулы воды не ассоциированы, так как на основании плотности паров воды при 100° известным методом (стр. 39) для воды находят обычный молекулярный вес. [c.330]

    Наличие высокой точки кипения не является единственной особенностью ассоциирующих жидкостей. Так, например, ряд соединений, которые содержат нитро-, циано- и карбонильную группы, но не имеют реакционноспособного атома водорода, также обладают высокой точкой кипения, но по ОДНОМУ ЭТОМУ признаку их вовсе не следует относить к ассоциирующим жидкостям. А именно у этих относительно высококипящих веществ отсутствует другая характерная особенность ассоциированных жидкостей. Эта особенность состоит в значительном отклонении от теоремы соответственных состояний. Отклонения могут проявляться в различной мере, смотря по тому, какое требование предъявляют к степени точности теоремы соответственных состояний, которую хотят проверить. Эту проверку можно проводить различными ПУТЯМИ. Проще всего выполняется проверка для закономерностей, вытекающих как основные правила из данной теоремы. Указанные закономерности касаются легко определяемых свойств жидкостей, а именно правило относительно температурной зависимости поверхностного натяжения — правило Этвеша правило о соотношении между теплотой испарения и точкой кипения — правило Пикте—Трутона. Однако константы, входящие в выражения правил Этвеша и Трутона, в действительности не являются постоянными, а колеблются в той или иной степени от вещества к веществу, так что можно выявить только грубые эффекты. Значительно более точно проводить изучение с универсальным уравнением состояния, однако эти исследования требуют большого экспериментального материала. При этом, конечно, не следует основываться на сравнительно простом уравнении Ван-дер-Ваальса. Нужно использовать такие эмпирические уравнения, как уравнение Бертоле или Воля, которые лучше удовлетворяются в отношении абсолютных значений входящих в них констант, чем уравнение Ван-дер-Ваальса. Для органических соединений этот переход к универсальному уравнению состояния почти всегда невозможен вследствие недостаточного экспериментального материала, так что вообще в таких случаях приходится ограничиваться правилами Этвеша и Пикте—Трутона. Из основных неорганических прототипов органических ассоциирующих жидкостей не подчиняются универсальному уравнению состояния вода и аммиак, последний, впрочем, значительно меньше . Исключительное положение гидроксильных органических соединений, относящихся к типу воды, обнаруживается также в уравнениях состояния некоторых спиртов и карбоновых кислот для аминов нет НУЖНОГО материала. [c.237]


Смотреть страницы где упоминается термин Трутона константы и правило: [c.464]    [c.144]    [c.41]   
Физические методы органической химии Том 2 (1952) -- [ c.154 ]

Физические методы органической химии Том 2 (1952) -- [ c.154 ]




ПОИСК





Смотрите так же термины и статьи:

Трутона

Трутона константа

Трутона правило



© 2024 chem21.info Реклама на сайте