Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сталь защита от коррозии с помощью

    Этот способ защиты металлов называется протекторным, а присоединенный к металлу анодный электрод — протектором. Материалом для изготовления протектора для защиты изделий из железа и стали чаще всего служит цинк. Электрохимическая защита при помощи протекторов применяется при коррозии металлов, находящихся в растворах электролитов. Радиус действия протектора, т. е. расстояние, на которое распространяется защитное действие протектора, тем больше, чем выше электропроводность среды, в которой находится защищаемый металл, и чем больше разность потенциалов протектора и защищаемого металла. [c.189]


    Наиболее распространена защита алюминия и его сплавов от коррозии электрохимическим оксидированием, при котором окисление достигается действием электрического тока (см. работу 5 этого раздела). Алюминиевые изделия помещают в электролит в качестве анода, поэтому метод обработки носит название — анодное окисление, или анодирование. При анодировании на алюминии и его сплавах получают пленки толщиной 5—20 мк, а в специальных случаях до 200—300 мк. Анодирование применяется не только для защиты от коррозии и улучшения адгезии (сцепления) с лакокрасочными покрытиями, но и для декоративной отделки поверхности металла, получения на ней фотоизображений, повышения стойкости против истирания, получения поверхностного электро- и теплоизоляционного слоя и слоя высокой твердости. Твердость анодной окисной пленки на чистом алюминии 1500 кг/мм , т. е. выше, чем твердость закаленной инструментальной стали. С помощью анодных пленок алюминия изготовляют алюминиевые выпрямители и конденсаторы. В последнее время анодная окисная пленка используется как подслой для лучшего сцепления алюминия с гальваническими покрытиями (хромом, никелем, серебром и др.). [c.146]

    На практике катодную защиту можно применять для предупреждения коррозии таких металлических материалов, как сталь, медь, свинец и латунь, в любой почве и почти всех водных средах. Можно предотвратить также питтинговую коррозию пассивных металлов, например нержавеющей стали и алюминия. Катодную защиту эффективно применяют для борьбы с коррозионным растрескиванием под напряжением (например, латуней, мягких и нержавеющих сталей, магния, алюминия), с коррозионной усталостью большинства металлов (но не просто усталостью), межкристаллитной коррозией (например, дуралюмина, нержавеющей стали 18-8) или обесцинкованием латуней. С ее помощью можно предупредить КРН высоконагруженных стрей, но не водородное растрескивание. Коррозия выше ватерлинии (например, водяных баков) катодной защитой не предотвращается, так как пропускаемый ток протекает только через поверхность металла, контактирующую с электролитом. Защитной плотности нельзя также достигнуть на электрически экранированных поверхностях, например на внутренней поверхности трубок водяных конденсаторов (если в трубки не введены вспомогательные аноды), даже если сам корпус конденсатора достаточно защищен. [c.215]


Рис. 76. Схема установки для исследования защиты стали от коррозии с помощью протектора Рис. 76. <a href="/info/13990">Схема установки</a> для <a href="/info/1917428">исследования защиты</a> стали от коррозии с помощью протектора
    Эти виды защиты (методы повыщения коррозионно-усталостной прочности стали) имеют лишь то отрицательное свойство, что улучшенный приповерхностный слой металла постепенно разрушается от коррозии. В связи с этим возник комбинированный метод защиты при помощи улучшения антикоррозионных свойств приповерхностного слоя металла или его электрохимической защиты и одновременного его упрочнения и создания в нем остаточных напряжений сжатия. К таким методам относятся в частности описанное в VI—8 приповерхностное азотирование стальных деталей, при котором значительно повышаются антикоррозионные свойства приповерхностного слоя металла. [c.179]

    В связи с развитием ракетной техники появилась необходимость в изыскании ингибиторов для дымящей азотной кислоты, которая применяется в качестве одного из компонентов ракетного топлива (окислителя). По данным [133], в дымящей азотной кислоте [НЫОз (82,8%), КОг (13%) и НгО (3,2%), в некоторых опытах концентрацию МОг повышали до 21%] хорошими ингибирующими свойствами по отношению к алюминиевым сплавам и некоторым нержавеющим сталям [Сг (18—21), N1 (8- 11), Мо (l- i,75), (1 1,75), С (0,28- 0,55%] обладает фтористоводородная кислота (от 0,2 до 1%). Скорость коррозии нержавеющих сталей в окислителе указанного состава уже при содержании НР = 0,5% практически равна нулю. Однако еслп нержавеющая сталь предварительно подвергается нагреву, способствующему межкристаллитной коррозии (450-+900°С), добавка НР к дымящей азотной кислоте усиливает коррозию. Алюминиевые сплавы в этих условиях абсолютно з стойчивы. Стали, содержащие менее 15% Сг (без никеля), не защищаются НР в дымящей азотной кислоте. С увеличением содержания в стали хрома (Ст. 430, 446) защита с помощью НР улучшается, т. е. они, по мнению авторов, могут применяться. [c.214]

    В современных абсорберах кожух и сферическая крышка не имеют антикоррозионной защиты. Колосниковая решетка вместо кислотоупорного кирпича выполняется из швеллерных стальных балок, распределительная плита в верхней части абсорбера — из чугуна или углеродистой стали. Трубки, с помощью которых кислота равномерно распределяется но насадке, делают из углеродистой стали. Днище и нижнюю часть газовой коробки защищают от коррозии кислотоупорными плитками, уложенными на слой кислотоупорной замазки. [c.116]

    Цель работы — исследование эффективности катодной электрохимической защиты стали от коррозии в нейтральном электролите с помощью анодного протектора и количественных показателей работы анодного протектора. Работа состоит в определении убыли мас- [c.247]

    В выводах кратко суммируют результаты опытов и дают оценку эффективности защиты стали от коррозии в исследованном электролите с помощью данного анодного протектора и стабильности работы протектора во времени. [c.253]

    Другие ингибиторы коррозии. Создание пленок на теплообменной поверхности и стенках трубопроводов с целью защиты стали от коррозии возможно при помощи других ингибиторов, например кремнефтористого цинка, а также смеси полифосфатов и хроматов, динатрийфосфата и бихромата, фосфатно-хро-матной-цинковой смеси и др. Ввиду небольшого опыта и данных исследований по применению этих и других минеральных и органических ингибиторов коррозии следует в каждом случае проводить предварительные исследования на модели их эффективности и условия применения. [c.430]

    Как правило, все современные подземные трубопроводы и резервуары предохраняют от коррозии с помощью катодной защиты в сочетании с армированными покрытиями на основе каменноугольной смолы. При этом достигается эффективная и экономически целесообразная защита стали от коррозии во всех грунтах в течение времени, на протяжении которого осуществляется катодная защита. [c.148]

    Сталь в судостроении. Обычно листы для обшивки судов изготовляются из мягкой стали за исключением тех случаев, когда вводятся другие элементы, дающие повышение поверхностной твердости, как, например, для военных судов. Защита при помощи окраски обсуждается в главе XIV. Вероятно, главной причиной сильной коррозии судовых листов является местное удаление окалины во время кратковременного воздействия внешней атмосферы на верфи. Комбинация больших катодов (части, покрытые окалиной) и небольших анодов (участки, свободные от окалины) вызывает интенсивную коррозию. Усиленная коррозия в разрывах окалины была установлена 2 лабораторными опытами в Кембридже, проводившимися в растворах хлорида и в воде, взятой из существующих портов. На образцах стальных листов при помощи нагрева были получены слои окалины, и на каждом образце была нанесена одна царапина, проходящая сквозь окисную пленку затем образцы были помещены в наклонном положе- НИИ в жидкость, причем царапина. приходилась с обратной стороны образца. Перфорация получалась вдоль царапины через несколько месяцев. Образцы, не имевшие видимой окисной пленки, не пострадали от перфорации, так как коррозия, начавшись вдоль царапины, распространялась по всей поверхности образца. Несомненно, что сульфиды играют заметную роль в коррозии судовых листов. Копенгаген нашел сульфид железа в коррозионных продуктах, и так как сульфиды могут быть бактериального происхождения, возможно, что такого рода коррозия будет распространяться. Следует отметить, что некоторые краски, обладая защитными свойствами в отсутствии сульфидов, в присутствии последних дают плохие результаты. В настоящее время пытаются улучшить состав стали в целях уменьшения коррозии. Добавки одной меди принесли небольшую пользу, по крайней мере в случае стали, применяемой для обшивки подводной части. [c.510]


    Установлена эффективная защита стали от коррозии и наводороживания с помощью ингибитора ИФХАНГАЗ. [c.30]

    Анализ режимов работы трубопровода за последние 20 лет позволил установить, что содержание кислых компонентов в газе монотонно возрастает, а влажность увеличивается. В первые годы эксплуатации ингибирование трубопровода проводили при помощи двух разделительных поршней, между которыми размещался раствор ингибитора. В настоящее время используют один поршень, впереди которого помещается раствор ингибитора. Периодичность ингибирования остается прежней (один раз в квартал). Следовательно, условия эксплуатации стали более жесткими, а режимы защиты трубопровода от внутренней коррозии не изменились. [c.116]

    Одним из наиболее распространенных и перспективных способов защиты металла от коррозии является ингибирование агрессивной среды. С помощью ингибиторов коррозии зачастую удается значительно продлить срок службы оборудования, повысить его надежность. а в ряде случаев использовать углеродистые стали вместо легированных. [c.64]

    Катодная защита водоподогревателей из углеродистой стали получила широкое развитие, потому, что она представляет собой экономически выгодную альтернативу применению материалов повышенной коррозионной стойкости. В настоящем разделе более подробно рассматриваются две системы, нашедшие наибольшее применение на практике катодная защита эмалированных водоподогревателей с применением магниевых протекторов и комбинированная защита резервуаров и трубопроводов при помощи алюминиевых анодов с наложением тока от постороннего источника. Эти способы могут быть применены и для внутренней защиты от коррозии резервуаров с холодной водой. [c.401]

    С помощью красок (если использовать, более обш,ий термин- лакокрасочных материалов) защищают сегодня свыше 80% всех металлоизделий, а если говорить о строительных конструкциях, то и все 95—100%. Поскольку, эта книга предназначена прежде всего для строителей, то основное внимание в ней будет уделено защите от коррозии путем окрашивания, тем более что роль этого метода, как об этом свидетельствует статистика, постоянно возрастает. Так, если в 1940—1950 годах на каждую тонну выплавляемой стали в нашей стране было произведено 15 кг лакокрасочных материалов, то в 8-й пятилетке—уже 19, в 9-й —20, в Ю-й же предусмотрено дальнейшее увеличение масштабов их производства. Пока в нашей стране для полного удовлетворения нужд противокоррозионной защиты красок не хватает. [c.7]

    Баки с катодной защитой предназначены для хранения воды с температурой до 95 °С. При катодной защите применяют аноды из железокремниевого чугуна (ГОСТ 11849—76) со скоростью анодного растворения, не превышающей 0,2 кг/(А-год). Железокремниевые аноды не свариваются, и для катодной защиты баков их следует соединять встык с помощью стальной шпильки. Допускается применение анодов из алюминия, особенно при сочетании катодной защиты с лакокрасочным покрытием В-ЖС-41. Не допускается применение анодов из углеродистой стали, загрязняющих подпиточную воду продуктами коррозии в результате растворения анодов и ухудшающих качество сетевой воды. Срок службы железокремниевых анодов до их замены на новые составляет не менее 5 лет. Надежная электрохимическая защита внутренней поверхности бака от коррозии обеспечивается при величине поляризационного потенциала в пределах от —0,54 до —0,60 В (по нормальному водородному электроду). Визуальный осмотр внутренней поверхности баков с катодной защитой должен проводиться один раз в год. [c.163]

    Во многих случаях коррозию металлических конструкций, погружаемых в морскую воду, можно значительно уменьшить с помощью катодной защиты. Защита стали, например, обеспечивается при потенциале около—0,80 В (в. к. э.). Наряду с различными покрытиями катодная защита является широко распространенным средством борьбы с коррозией подводных конструкций. [c.168]

    Цель работы — исследовать эффективнооть защиты стали от коррозии в нейтральном электролите с помощью протектора и дать количественную характеристику работы протектора. Работа состоит в определении весовых потерь в 1%-ном Na l незащищенного стального образца, стального образца, защищенного с помощью протектора, и самого протектора она сопровождается измерением электродных потенциалов корродирующих стальных образцов и протектора и силы защитного тока. [c.202]

    Результаты проведенных опытов показывают, что при помощи ингибитора ИКБ-1 и аммиака коррозия различных марок сталей может быть снижена на 70—75%, чугуна на 86%, а оловянистой латуни на 52%. Особенно резкое снижение коррозии наблюдается для алюминия, процент защиты которого равен 99, т. е. скорость коррозии уменьшается в 100 раз. При применении одного аммиака защита этих металлов от коррозии наполовину меньше. [c.174]

    Прикладные вопросы, связанные с процессами электроосаждения и защиты от коррозии, изучались в течение многих лет, однако с теоретической стороны понимание этих процессов остается неудовлетворительным. Большая информация была получена с помощью полярографии, но лишь недавно стало ясно, что адсорбция с диффузионным контролем осложняется на капельном электроде из-за изменения заполнения при росте капли. Чешские ученые, и особенно Коутецкий, Корыта и Вебер, проделали детальные расчеты для учета изменения заполнения во времени. [c.18]

    В 1824 г. Хэмфри Дэви [2], основываясь на данных лабораторных исследований в соленой воде, сообщил, что медь можно успешно защитить от коррозии, если обеспечить ее контакт с железом или ЦИНКОМ. Он предложил осуществлять катодную защиту медной обшивки кораблей с использованием прикрепленных к корпусу жертвенных железных блоков при соотношении поверхностей железа и меди I 100. При практической проверке скорость коррозии, как и предсказывал Дэви, заметно уменьшилась. Однако катодно защищенная медь обрастала морскими организмами в отличие от незащищенной меди, которая образует в воде ионы меди в концентрации, достаточной для уничтожения этих организмов (см. разд. 5.6.1). Так как обрастание корпуса уменьшает скорость судна во время плавания. Британское Адмиралтейство отвергло эту идею. После смерти X. Дэви в 1829 г. его двоюродный брат Эдмунд Дэви- (профессор химии Королевского Дублинского университета) успешно защищал железные части буев с помощью цинковых брусков, а Роберт Маллет в 1840 г. специально изготовил цинковый сплав, пригодный для использования в качестве жертвенных анодов. Когда деревянные корпуса судов были вытеснены стальными, установка цинковых пластин стала традиционной для всех кораблей Адмиралтейства . Эти пластины обеспечивали местную защиту, особенно от усиленной коррозии, вызванной контактом с бронзовым гребным валом. Однако возможность общей катодной защиты морских судов не изучалась примерно до 1950 г., когда этим занялись в канадском военно-морском флоте [3]. Было показано, что при правильном применении препятствующих йбрастанию красок и в сочетании с противокоррозионными красками катодная защита кораблей возможна и заметно снижает эксплуатационные расходы. Катодно защищенные, а следовательно, гладкие корпуса уменьшают также расход топлива при движении кораблей. [c.216]

    Проблема хранения и транспортирования жидких удобрений приобретает большое значение в связи со значительной коррозионной активностью этих растворов. Зашита от коррозии больших хранилищ с помощью лакокрасочных покрытий или футеровки, замена углеродистой стали алюминием или нержавеющей сталью нецелесообразна и экономически невыгодна. Добавка ингибиторов практически мало эффективна. Поэтому применение анодной защиты углеродистой стали в аммонийно-аммиачных средах является чуть ли не единственным эффективным методом защиты от коррозии, позволяющим использовать оборудование из дешевой углеродистой стали. [c.36]

    Расположенные на промышленных предприятиях защищаемые системы — трубопроводы, емкости, сосуды, колонны и др. промышленные агрегаты — все чаще сооружаются таким образом, чтобы их системы бьиш металлически связаны с конструкциями из бетона и стали (фундаменты, стены зданий, опоры и т. п.). Так как сталь в бетоне имеет более высокий положительный потенциал, чем сталь в грунте (примерно на 0,2-0,5 В), то объекты, контактирующие с бетоном, подвержены интенсивному коррозионному воздействию. При создании новых конструкций из бетона и стали необходимо предусмотреть электрическую изоляцию бетонных поверхностей. Опасность коррозии металл—бетон может быть устранена созданием локальной катодной защиты. С помощью катодной поляризации постоянным током стремятся выровнять разлгганые потенциалы металлов. Хотя сталь в бетоне сама по себе не корродирует, однако ее катодно поляризуют, чтобы не было коррозионного воздействия на проложенные в земле металлические системы (трубопроводы, кабели, складские емкости газов и т. п.). Для этого требуется защитный ток поверхности бетона плотностью 2-5 А/м . Защитный ток защищаемых объектов должен быть в пределах 10-50 мА/м, что в сравнении с защтным током бетона представляется весьма незначительной величиной. Это связано с тем, что из-за больших площадей бетонных конструкций (фундаментов и т. п.) в грунт надо вводить большие токи. [c.131]

    Коррозионностойкие стали и другие пассивные сплавы (например, медноникелевые) можно защитить от точечной коррозии катодной поляризацией их от внешнего источника постоянного тока или с помощью цинковых, алюминиевых или железных протекторов. Катодная поляризация должна обеспечить такой потенциал поверхности защищаемого металла или сплава, величина которого будет ниже потенциала питтингообразо-вания. [c.444]

    Получение и использование. Цинк широко расиространен в природе, но в свободном виде не встречается. Наиболее распространенным его минералом является цинковая обманка (сфалерит) — ZnS. Он входит в состав многих сульфидных комплексных руд. Получают цинк пирометаллургическим способом, основанным на восстановлении углем окисленной или обожженной руды в ретортах без доступа воздуха с отгоном паров цинка и последующим рафинированием. До 40% мирового производства цинка расходуется на защиту железа и стали от коррозии (оцинкованное железо и т, п.). Цинковая пыль используется как сильнейший восстановитель. Огромно число сплавов цинка, из которых самый древний — латунь (сплав цинка с медью). Сульфид цинка — прекрасный люминофор, приобретает способность светиться под действием коротковолнового излучения или электронного пучка. Соединения цинка мало ядовиты, однако хранить пищевые продукты в оцинкованной посуде не рекомендуется. Оксид цинка в виде пыли при вдыхании вызывает литейную лихорадку, выражающуюся в ознобе, головной боли, тошноте, кашле. Предельно допустимые нормы оксида цинка в воздухе— 0,005 мг/л. Содержание цинка в организмах растений и животных довольно высокое > 0,001%. Он необходим для нормальной физиологической деятельности. Суточная потребность человека в цинке 15 мг. Его действие связано с гормонами и некоторыми ферментами, например, с помощью которых происходит перенос СОг в крови. [c.310]

    Следует иметь в виду, что бакелитовые, а также другие тонкослойные лакокрасочные покрытия достаточно хорошо защищают сталь от коррозии водой, по не защищают ее от эрозии и тем более от интенсивного гидроабразивного износа. Между тем, часть теплообменной аппаратуры подвергается сильному механическому износу под воздействием катализаторной пыли, шламовых вод и других сред со взвешенными твердыми частицами. В этом случае надежная защита от коррозионного и абразивного износа может быть достигнута лишь с помощью резиновых покрытий. Во ВНИИСКе испытывался маленький стальной теплообменник, у которого внутренняя поверхность труб и трубные решетки были защищены вулканизованным покрытием из жидкого гуммировоч-ного состава на основе наирита НТ [17]. Гуммирование производили по схеме, изображенной на рис. 8.5. Длительные испытания с проточной водой при 80—85° С показали хорошие защитные свойства наиритового покрытия толщиной 1—1,2 мм. У гуммированного аппарата теплообмен, несомненно, будет несколько хуже по сравнению с теплообменником без защитного покрытия, и это следует учитывать при проектировании. Коэффициент теплопередачи для наиритового покрытия можно принимать равным 0,5 ккал/(м -ч). [c.159]

    Роль пластмассовых покрытий в современной технике трудно переоценить. Превосходная химическая стойкость, водостойкость, погодоустойчивость, стойкость к изменению температуры и другие свойства полимерных материалов позволяют использовать их для защиты от коррозии и агрессивного воздействия химических сред самого разнообразного химического оборудования, трубопроводов, строительных конструкций. Пластмассовые покрытия позволяют повысить срок службы обычных конструкционных материалов, а это означает, что в ряде случаев нет необходимости применять дорогостоящие нержавеющие стали и сплавы. Хорошие декоративные свойства пластмасс в сочетании с такими свойствами, как устойчивость к воздействию микроорганизмов, низкая газопроницаемость, отсутствие токсичности и т. д. дают возможность использовать пластмассы для создания различных слоистых материалов, успешно применяемых для декоративного оформления и упаковки. Покрытия на различные изделия и рулонные материалы могут быть нанесены разными способами в зависимости от физических свойств полимерного материала, а также от вида покрываемого изделия. Для создания покрытий полимерные материалы могут использоваться в виде расплавов, растворов, порошков, пленок. Одним из наиболее интересных является метод нанесения порошкообразного полимера в псевдоожижениом слое. Покрытия на основе высокомолекулярных эпоксидных смол на металлических деталях самого сложного профиля могут быть получены окунанием предварительно нагретой детали в ванну, в которой находится псевдоожиженная порошкообразная смола и отвердитель. Для нанесения покрытий на наружные и внутренние поверхности крупногабаритных конструкций разработаны различные конструкции многокомпонентных распылителей, с помощью которых можно наносить на поверхность как жидкие композиции, так порошковые и волокнистые наполнители. Несколько лет назад появились сообщения о вакуумном методе нанесения пленочных покрытий. Покрытия в этом случае образуются путем приклеивания под вакуумом полимерной пленки к поверхности изделия [235]. [c.195]

    Носитель, поступающий со склада, рассеивают на грохоте / и по мере надобности через рукавный вакуум-фильтр 2 подают в эмалированный реактор с паровой рубашкой 3 для извлечения избыточного количества АЬОз серной кислотой. Для-уменьшения потерь носителя из-за растрескивания гранул предусмотрено пневм.атиче-ское перемешивание фаз. В реакторе поддерживают температуру 90°С и концентрацию кислоты — 10%. Время, необходимое для извлечения АЬОз, рассчитывают по формуле (IV. 46). Реактор 3 — периодически действующий, что вызвано трудностью подбора конструкционного материала для создания непрерывно действующего аппарата. Для обеспечения непрерывности процесса одновременно используют несколько реакторов. В целях защиты от коррозии кислыми водами последующих аппаратов, отмывку носителя от сульфат-иона первоначально производят в том же аппарате. Частично отмытый носитель поступает на сетчатый конвейе ) 4 (сетка из нержавеющей стали с диаметром отверстий 0,1—0,2 мм). Алюмосиликат располагается на ленте конвейера слоем толщиной в 2—3 см. Лента конвейера с лежащим на ней носителем движется над сборником промывных вод 7 и орошается сверху водой с помощью форсунки 6. Отмывка носителя продолжается 40 мин. В соответствии со скоростью движения ленты и временем отмывки рассчитывают необходимую длину промывной зоны. Носитель сушат 1 ч в печи 8 тоннельного типа при 120—130°С и пропитывают раствором активных солей в ванне 9. Она представляет собой прямоугольную емкость из нержавеющей стали с паровой рубашкой для создания и поддерживания необходимой тeмпepaтypьL Раствор солей непрерывно циркулирует через ванну с помощью центробежного насоса И. Для облегчения поддержания постоянной концентрации пропиточного раствора, отношение Ж Т в ванне равняется 120. Перемешивание раствора специальными механическими средствами нецелесообразно, поскольку при достаточной мощности циркуляционного насоса И достигается полное смешение в системе ванна, насос, сборник 10. Емкости 13 и 14 используют для приготовления [c.145]

    ИЗМЕРЕНИЯ ПОТЕНЦИАЛА. Критерий степени защиты, включая и перезащиту, получают с помощью измерения потенциала защищаемой конструкции. Для практики эти измерения наиболее важны, они общеприняты и широко используются специалистами по коррозии. Такой подход основан на фундаментальном положении, что оптимум катодной защиты достигается, когда защищаемая конструкция поляризована до потенциала анодных участков в отсутствие тока. Этот эмпирически установлейный потенциал для стали равен —0,85 В по отношению к насыщенному медносульфатному электроду или —0,53 В. [c.225]

    Особым случаем является катодная защита нержавеющей стали, при которой защитный потенциал находится внутри облааи пассивности этой стали (см. 8.2). Можно, например, предотвращать питтинговую и щелевую коррозию нержавеющей стали марки А131304 в природной морской воде с помощью катодной защиты, поддерживая потенциал немного ниже —0,35 В по насыщенному каломельному электроду. [c.69]

    Исследования зашитной способности гидрооксида кальция для защиты от коррозии подземных металлических трубопроводов в местах локачьного повреждения изоляционного покрытия проводились на стали 17Г1С путем снятия анодных и катодных поляризационных кривых при помощи потенциостата П-5848 в специально изготовленной установке, представляющей собой грунтовую электрохимическую ячейку, позволяюшую снимать поляризационные кривые. [c.29]

    ПИНС широко и с успехом применяют для защиты от коррозии сельскохозяйственной техники тракторов, прицепов, комбайнов, жаток, молотилок, плугов, компрессоров, металлоконструкций и оборудования животноводческих ферм, птицефабрик,, мелиоративной техники, строительных и дорожных машин и пр. [21—32, 129]. Если коррозия машин и оборудования в агрессивных сточных водах животноводческих комплексов (pH 7, мочевина, хлориды, сульфиды, органические кислоты) составляет для сталей от 200 до 400 г/м в год со сроком службы транспортеров, канализационных труб, ограждающих уборочных и раздаточных устройств 2—3 года, то применение ПИНС позволяет увеличить эти сроки до —8 лет [7, 129]. При этом нанесение ПИНС требует минимальных трудовых затрат и времени на консервацию оборудования и не требует расконсервации. На эти виды техники ПИНС наносят с помощью любых, имеющихся в наличии средств установки для нанесения антикоррозионных покрытий М-183 ГАРО и ОМ-4263, агрегат АКЭ-50 смазко- и краскораспылители СО-71, СО-24А, КР-Ю, КРУ-1, КА-1, ЗИЛ, 0-37Аидр. [129]. [c.200]

    При помощи анодной защиты Риггсу [93] удалось уменьшить количество выделяемого водорода при коррозии нержавеющей стали 18—10 в 75%-ной фосфорной кислоте при 93°С, а также в 75%-ной Н3РО4+15 мг/л С]- при 24°С и тем самым предотвратить взрыв фосфорной кислоты в результате воспламенения водорода при внесении в хранилище электрического зонда. В фосфорной кислоте, содержащей хлорид, при 24 °С водород накапливается в незащищенной системе в 70 раз быстрее, чем в защищенной, а при 93 °С без хлорида — в 40 раз быстрее, чем в защищенной. Как показал Риггс [93], при применении анодной защиты скорость выделения водорода настолько низкая, что количество его никогда не достигает взрывоопасных концентраций. [c.67]

    Авторы проводили опыты на установке, имитирующей бытовое водоснабжение. Некоторые результаты, полученные авторами, представлены в табл. 8,4. В змеевик поступала холодная вода (жесткость по немецкой шкале 4,5, что соответствует 45 мг СаО на литр), затем нагревалась до 80°С. Концентрация ингибиторов — 1 г/л. В двухкомпонентных смесях ингибиторов (0,5+ -Ь0,5 г/л) сталь более чувствительна к ингибиторам, нежели медь, ее коррозия резко замедляется. Наилучшим ингибитором является нитрит натрия, который к тому же сильно уменьшает отложение осадков на медных змеевиках. Одновременную защиту стали и меди обеспечивает смесь бензоата натрия и нитрита натрия. Хорошие результаты были получены и с помощью одного бензоата натрия, тринатрийфосфата калия, цинк-хромата, [К2СГО4Х X3Zn r04-Zn(0H)2], а также смесей двух последних ингибиторов с силикатом натрия. Силикат натрия, а также двойные смеси, содержащие этот ингибитор, уменьшая общую коррозию, склонны, однако, по мнению авторов, вызывать локальную коррозию. [c.265]

    Пленки могут быть трех видов легкоснимаемые, смывающиеся и постоянные. Последние при необходимости покрывают постоянными лакокрасочными покрытиями. Съемные покрытия не обладают адгезией к металлу, и поэтому, когда в них отпадает необходимость, легко снимаются с (Поверхности металла. Смывающиеся покрытия после выполнения защитных функций могут быть удалены с помощью органических растворителей или воды. Ниже приведен перечень разработанных ГИПИ ЛКП ингибитированных покрытий для временной защиты металлов от атмосферной коррозии, съемные лак-ХС-596 — для защиты крупногабаритных изделий из черных и цветных металлов в условиях складского хранения состав А-535 — для межоперационной защиты стали и цветных металлов состав АК-535П — для межоперационной защиты окрашенных поверхностей (кроме нитроцеллюлозы) смывающиеся составы ИС-1 и ИСМ-3 — для временной защиты черных и цветных металлов постоянные краска ГФ-570РК — для временной защиты стальных листов и проката (может быть использована в качестве грунта) эмаль 1181 (бывш. МС-596) — для временной защиты листового и фасонного проката. [c.329]


Смотреть страницы где упоминается термин Сталь защита от коррозии с помощью: [c.178]    [c.181]    [c.214]    [c.102]    [c.35]    [c.93]    [c.34]    [c.189]    [c.278]    [c.278]    [c.171]   
Кислородная коррозия оборудования химических производств (1985) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Защита от коррозии



© 2025 chem21.info Реклама на сайте