Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетил-СоА образование из лейцина

    Пути расщепления валина и изолейцина сходны с таковым лейцина. Все три аминокислоты сначала трансаминируются в соответствующие а-оксокислоты, которые затем подвергаются окислительному декарбоксилированию с образованием СоА-прои-зводного. Последующие реакции сходны с реакциями окисления жирных кислот. Изолейцин дает ацетил-СоА и пропионил-СоА, тогда как валин образует метилмалонил-СоА. Существует врожденный дефект метаболизма, при котором нарушается окисление валина, изолейцина и лейцина. При болезни кленового сиропа блокируется окислительное декарбоксилирование этих трех аминокислот. В результате количество лейцина, изолейцина и валина в крови и мо- [c.174]


    Предшественниками глюкозы при глюконеогенезе являются пируват, оксалоацетат и фосфоенолпируват. Поэтому аминокислоты, которые превращаются в эти соединения, могут быть использованы для синтеза глюкозы (глюконеогенез из аминокислот) такие аминокислоты называют гликогенпыми. Глюконеогенез с участием аминокислот происходит особенно активно при преимущественно белковом питании, а также при голодании. В последнем случае используются аминокислоты собственных белков тканей. Катаболизм лейцина и лизина не включает стадии образования пировиноградной кислоты углеродная часть превращается непосредственно в ацетоуксусную кислоту и ацетил-КоА, из которых синтез углеводов невозможен это кетогепные аминокислоты. Тирозин, фенилаланин, изолейцин и триптофан являются одновременно и гликогенными, и кетогенными часть углеродных атомов их молекул при катаболизме образует пируват, другая часть включается в ацетил-КоА, минуя стадию пирувата. [c.340]

    При распаде изолейцина р-окисление идет до конца обычным образом с образованием ацетил-СоА и пропионил-СоА. Однако в ходе катаболизма лейцина после дегидрирования, которым начинается р-окис-ление, происходит присоединение двуокиси углерода, осуществляемое биотинилферментом (гл. 8, разд. В). Двойная связь, сопряженная с карбонилом тиоэфира, придает этому карбоксилированию сходство со стандартной реакцией р-карбоксилирования. Зачем понадобился этот лишний СОг Метильная группа в Р-положении блокирует полное р-окисление, но при этом остается возможным альдольное расщепление, приводящее к образованию ацетил-СоА и ацетона. Дальнейший метаболизм ацетона сопряжен с определенными трудностями. В случае присоединения СОг продуктом оказывается ацетоацетат, катаболизм которого легко доводится до конца через его превращения в ацетил-СоА. [c.116]

    На рис. 24.8 представлены пути окислительного распада аминокислот с разветвленной цепью — кетогенной аминокислоты лейцина, а также валина и изолейцина, являющихся одновременно кетогенными и гликогенными. В процессе метаболических превращений валина происходит образование сукцинил-КоА, который через цикл ТКК и при участии некоторых других ферментов может превратиться в пируват, а затем в глюкозу. В то же время лейцин дает непосредственно кетопродукт ацетоацетат и, кроме того, аце-тил-КоА, из которого также может образовываться ацетоацетат. Изолейцин дает ацетил-КоА и пропионил-КоА. Через метилмалонил-КоА пропи-онил-КоА превращается в сукцинил-КоА, и, следовательно, его надлежит считать гликогенным, а так как ацетил-КоА — кетогенное соединение, то изолейцин можно отнести одновременно к обеим категориям. [c.379]


    Кетен в кислой среде [163] также, невидимому, вызывает некоторую рацемизацию, обусловленную, весьма вероятно, промежуточным образованием уксусного ангидрида. При помощи этого реагента были получены [164] ацетил-/-лейцин и ацетил-/-глутами-новая кислота. Подобная рацемизация объясняется, повидимому, тем, что под действием ангидрида временно образуется азлактон [165], который легче ионизируется у асимметрического атома углерода [и, таким образом, рацемизуется (стр. 174)], чем исходная аминокислота. Степень рацемизации зависит от того, каким в раз- [c.120]

    Взаимосвязь обмена белков и жиров. В организме наблюдается в основном превращение белков в жиры, так как превращение жиров в белки ограничено. Преобладание белков в рационе питания животных вызывает активный биосинтез жиров. Отдельные аминокислоты (лейцин, фенилаланин, тирозин), превращаясь в ацетил-КоА, могут сразу включаться в процессы биосинтеза жирных кислот. Однако основное превращение белков в жиры происходит путем образования пировиноградной кислоты — метаболита углеводов, которая может превращаться в ацетил-КоА — исходный материал биосинтеза жирных кислот. [c.267]

    Аминокислоты как источники ацетил-КоА. Реакции превращения свободных аминокислот (тирозина, фенилаланина, лейцина, лизина, триптофана и др.), ведущие к образованию ацетил-КоА, у взрослых животных наиболее интенсивно протекают в печени и почках где они могут эффективно пополнять пул [c.169]

    Амина кислоты как источники ацетил-КоА. Реакции превращения свободных аминокислот (тирозина, фенилаланина, лейцина, лизина, триптофана и др.), ведущие к образованию ацетил-КоА, у взрослых животных наиболее интенсивно протекают в печени и почках, где они могут эффективно пополнять пул этого метаболита. В головном мозгу роль такого пути образования ацетил-КоА весьма незначительна. [c.54]

    На основе небольшого числа изменений исходной поликетоновой структуры возможен биосинтез многих необычных соединений [74]. Так, в некоторых случаях путем гидроксилирования происходит введение дополнительных атомов кислорода возможен перенос метильных групп от S-аденозилметионина с образованием метоксильных групп в отдельных случаях метильная группа присоединяется непосредственно к углеродной цепи. Помимо ацетил-СоА в качестве исходных структур синтеза поликетидов могут выступать как жирные кислоты с разветвленной цепью, образованные из валина, лейцина и изолейцина, так и никотиновая и бензойная кислоты. Исходной структурой биосинтеза антибиотика тетрациклина служит, по-видимому, амид малоновой кислоты в виде СоА-производного (рис. 12-10). На рис. 12-10 показано образование из поликетидов других важных антибиотиков. [c.563]

    При дезаминировании некоторых аминокислот (аланина, аспарагиновой, глутаминовой кислот) образуются а-кетокислоты (пировиноградная, а-кетоглутаровая, щавелевоуксусная), принадлежащие к числу промежуточных продуктов клеточного катаболизма. Больщинство же возникающих при этом органических кислот подвергается сначала предварительным превращениям, приводящим к появлению соединений, способных прямо включаться в основные катаболические пути клетки. Например, распад -лейцина в конечном итоге приводит к образованию ацетил-КоА — исходного субстрата ЦТК. Такова энергетическая сторона метаболизма бактерий-аммонификаторов. [c.402]

    Лейцин расщепляется в проростках гваюлы до изокапроно-вой, изовалериановой и 3-диметилакриловой кислот. Фермент из проростков льна в присутствии АТФ и КоА катализирует активацию 3-диметилакриловой кислоты и присоединение СОг с образованием З-окси-З-метилглутаминовой кислоты, которая далее расщепляется до ацетоуксусной кислоты и ацетил-КоА. [c.429]

    На фиг. 138—140 показаны пути окислительного распада валина, лейцина и изолейцина. Первые три этапа этих путей совпадают. Затем пути расходятся, но во всех случаях на более поздних этапах наблюдается отчетливое сходство с реакциями окисления жирных кислот. Отметим образование р-окси-Р-метилглутарил-SKoA при окислении лейцина. Это соединение — важный промежуточный продукт в синтезе холестерина и других стероидов из ацетил-SKo А (см. гл. XVI). [c.447]

    Все аминокислоты, образующие пируват (аланин, Щ1стеин, цистин, глицин, гидроксипролин, серин и треонин), могут превращаться в ацетил-СоА. Кроме того, 5 аминокислот образуют ацетил-СоА без промежуточного образования пирувата. К числу этих аминокислот относятся ароматические аминокислоты фенилаланин, тирозин и триптофан, основная аминокислота лизин и нейтральная аминокислота с разветвленной цепью лейцин. [c.327]

    М-(1-3-замещенные-2-оксопропил)акриламиды и метакриламиды синтезированы с хорошими выходами из соответствующих №ацил-а-аминокислот, таких как )1-лейцин, 2 -фенилаланин, 01-ва-лин, по реакции Дэкина - Веста, которая протекает через промежуточную стадию образования 2-алкенил-4-ацетил-5-оксазолонов, выделять которые, однако, нет необходимости, по следующей схеме [66, 124]  [c.28]

    Фермент пируваткарбоксилаза катализирует первую реакцию превращения трехуглеродных предшественников в глюкозу (глюконеогенез). Ацетил-КоА — положительный модулятор реакции, т.е. при его избытке стимулируется карбоксилирование пирувата. (Образованная ЩУК обеспечивает окисление большого количества молекул ацетил-КоА. Поскольку ЩУК образуется преимущественно из углеводов, а ацетил-КоА — из жирных кислот, говорят, что жиры горят в пламени углеводов .) Ацетил-КоА-карбоксилаза катализирует образование малонил-КоА, играющего ведущую роль в биосинтезе жирных кислот. Для превращения пропионата в сукцинат необходим этап карбоксилирования, катализируемого пропионил-КоА-карбо-ксилазой. Это важный путь метаболизма жирных кислот с короткой цепью углеродных атомов и продуктов распада жирных кислот с нечетным числом углеродных атомов. Особое значение этот путь имеет для взаимодействия кишечной микрофлоры и организма хозяина. В катаболизме лейцина и некоторых изопреноидов участвует реакция, катализируемая Р-метилкротонил-КоА-карбоксилазой. [c.361]


    Образование кетоновых тел. Две молекулы ацетил-КоА взаимодействуют между собой, в результате чего образуется ацетоацетил-КоА (рис. 75). Далее ацетоацетил-КоА может взаимодействовать с третьей молекулой ацетил-КоА с образованием промежуточного соединения 3-гид-рокси-З-метилглутарил-КоА (ГМГ). Последний может образовываться при распаде аминокислот, например лейцина, и в процессе биосинтеза холестерина. ГМГ-КоА-синтетаза находится в основном в клетках печени, поэтому синтез кетоновых тел происходит только в этом органе. Затем под влиянием фермента ГМГ-КоА-лиазы ГМГ-КоА распадается с образованием первого кетонового тела — ацетоуксусной кислоты, которая может превращаться в 3-гидроксимасляную кислоту или спонтанно декарбоксилиро-ваться, превращаясь в ацетон. [c.200]

    Стерины, каротиноиды, соединения групп Q-коферментов относятся к терпенам, имеют общий путь биосинтеза, подчиняющийся изопреновому правилу . В соответствии с этим правилом каротиноиды (политерпены), стерины (тритерпены), а также убихиноны и гиббереллиновая кислота синтезируются из изопре-новых единиц в результате прохождения четырех стадий 1) образование мевалоната из ацетил-КоА или лейцина 2) дегидратирование и декарбоксилирование мевалонилпирофосфата с образованием активного изопрена - изопеитеиилпирофосфата и конденсация изопреновых звеньев с образованием ациклических терпенов разной длины 3) циклизация ациклических структур  [c.305]


Смотреть страницы где упоминается термин Ацетил-СоА образование из лейцина: [c.248]    [c.116]    [c.117]    [c.546]    [c.546]    [c.432]    [c.229]    [c.332]    [c.337]    [c.174]   
Биохимия Т.3 Изд.2 (1985) -- [ c.174 ]




ПОИСК





Смотрите так же термины и статьи:

Лейцин



© 2024 chem21.info Реклама на сайте