Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Валин распад

    Катаболизм аминокислот с разветвленной цепью лейцина, изолейцина и валина—преимущественно осуществляется не в печени (место распада большинства остальных аминокислот), а в мышечной и жировой тканях, в почках и ткани мозга. Сначала все три аминокислоты подвергаются трансаминированию с а-кетоглутаратом под действием одного общего и специфического фермента—аминотрансферазы аминокислот с разветвленной цепью (КФ 2.6.1.42) (не содержится в печени) с образованием соответствующих а-кетокислот. Последующее окислительное декарбоксилирование а-кетокислот приводит к образованию ацил-КоА-производных. [c.459]


Фиг. 122. Распад лейцина, изолейцина и валина. Фиг. 122. <a href="/info/629352">Распад лейцина</a>, изолейцина и валина.
    В свободном виде пропионовая кислота не встречается ни у животных, ни у растений. Исключение составляют жвачные, у которых пропионовая кислота является одним из основных продуктов переваривания углеводов, осуществляемого микроорганизмами рубца. Однако обмен пропионовой кислоты имеет большое значение, так как она образуется в ходе многих реакций распада. Например, пропионовая кислота получается при Р-окислении жирных кислот с нечетным числом углеродных атомов. Распад аминокислот с разветвленной цепью — изолейцина и валина — под действием ферментов из животных также приводит к образованию пропионовой кислоты (см. стр. 428). [c.315]

    Несмотря на то что в состав белков человеческого организма и вхог дят все аминокислоты, перечисленные в табл. 14.1, однако отнюдь не все они должны обязательно содержаться в пище. Экспериментально доказано, что для человека существенное значение имеют девять аминокислот. Такими незаменимыми аминокислотами являются гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин. Все остальные аминокислоты, которые называют зал1еныл1ьши аминокислотами, человеческий организм способен вырабатывать сам. Минимальные количества аминокислот, необходимые человеку в молодости, были установлены американским биохимиком У. Ч. Роузом. Ерли ежесуточное поступление в организм человека любой из восьми указанных аминокислот (за исключением гистидина) окажется ниже определенного уровня, то организм человека будет выделять больше соединений азота, нежели получать их с пищей белки в его организме станут распадаться быстрее, чем синтезироваться. Потребность молодых людей в аминокислотах колеблется в пределах двукратной дозы, например 0,4—0,8 г лизина в сутки. Минимальная потребность по Роузу представляет собой наибольшую величину для любого из наблюдаемых им лиц. Нет сомнений в том, что каждый человек отличается от другого своими генетическими особенностями, а следовательно, и своими биохимическими характеристиками. Данные, приведенные в табл. 14.2, вдвое превышают значения, установленные Роузом. Предположительно эти количества вполне достаточны для предотвращения нарушений белкового обмена для большинства людей (99%). Потребности женщин составляют приблизительно две трети от количеств, указанных для мужчин. [c.389]


    Пути распада валина, изолейцина и лейцина изучены в опытах с тканями млекопитающих. По-видимому, превращения этих аминокислот аналогичны все они подвергаются переаминированию с образованием соответствующих а-кетокислот и затем необратимому окислительному декарбоксилированию с превращением остатков скелета в соответствующие ацилпроизводные кофермента А. В ранних исследованиях было установлено, что при превращении лейцина и изовалерьяновой кислоты в организме млекопитающих образуются кетоновые тела [413—415]. Отдельные этапы превращения лейцина в ацетоуксусную кислоту были выяснены при помощи изотопных методов и в последнее время — в исследованиях с ферментами. В опытах с изотопным углеродом установлено, что атомы С-1 и С-2 изовалерьяновой кислоты, соответствующие а- и р-углеродным атомам молекулы лейцина, дают начало двухуглеродным остаткам, которые могут конденсироваться с образованием ацетоуксусной кислоты [416—419]. Углеродные атомы метильных групп изо-пропильного остатка становятся углеродными атомами метильной и метиленовой групп ацетоуксусной кислоты. -у-Углеродный атом молекулы лейцина (или атом С-3 изовалерьяновой кислоты) переходит в карбонильный углерод ацетоуксусной кислоты. При этих исследованиях было доказано также включение СОг в карбоксильную группу ацетоуксусной кислоты [418, 420]. Ферментативные опыты Куна и сотрудников [421—423, 1102] привели к установлению представленных ниже промежуточных продуктов и реакций  [c.358]

    Для полного гидролиза белков можно использовать сильную кислоту, сильное основание или специфические катализаторы — протеолитические ферменты. Наиболее часто используется для этой цели сильная кислота. Обычная методика гидролиза состоит в кипячении белка с 6 н. НС1 в запаянной ампуле (из которой предварительно откачивают воздух) при 110° в течение 12—96 час. В этих условиях пептидные связи гидролизуются с количественным выходом (для полного освобождения валина, лейцина и изолейцина требуется сравнительно большое время) и в результате гидролиза образуются гидрохлориды аминокислот. При нагревании с минеральными кислотами триптофан полностью распадается, а оксиаминокислоты серин и треонин подвергаются частичному разрушению. Эти потери определенным образом учитываются. Рацемизации аминокислот при кислотном гидролизе не происходит. [c.57]

    Для лизина эта зависимость выражается кривой. По этим данным аланин, глицин и валин распадаются на половину при 180° С на каолините за 5—9 ч. [c.177]

    Распад изолейцина, лейцина и валина изучен в тканях животных. По-видимому, он протекает так, как показано на фиг. 122. Наличие таких же превращений у растений подтверждается следующими данными. [c.429]

    Теперь понятно, откуда берутся небольшие количества нечетных кислот в живых организмах они синтезируются при участии пропионил-КоА, который является одним из продуктов обмена веществ и образуется в небольших количествах, например, при распаде аминокислот валина и изолейцина. Нужны ли такие кислоты организму или это вредный побочный продукт его жизнедеятельности Советские ученые (Е. К. Алимова с сотр.) считают, что в пределах физиологической нормы нечетные жирные кислоты играют определенную положительную роль в обменных [c.125]

    Связующим звеном в обмене белков и углеводов при переходе первых во вторые и особенно вторых в первые служит ПВК. Являясь главным конечным продуктом дихотомического распада углеводов, ПВК служит исходным веществом для биосинтеза аланина, валина и лейцина. При ее карбоксилировании образуется щавелевоуксусная кислота, из которой строится новая группа аминокислот—аспарагиновая кислота, треонин, метионин, изолейцин и лизин. Вступая в цикл трикарбоновых и дикарбоновых кислот, ПВК используется для биосинтеза а-кетоглутаровой кислоты, из которой образуются глутаминовая кислота, пролин и аргинин. Предшественник ПВК—3-фосфоглицериновая кислота—является исходным соединением для синтеза серина, глицина, цистина и цистеина. [c.470]

    В экстрактах ацетоновых препаратов из ряда растений обнаружена ферментная система, декарбоксилирующая метилмалонил-КоА в пропионил-КоА (конечный этап распада валина). [c.429]

    Уменьшение количеств отдельных аминокислот в облученном коллагене изменяется в зависимости от условий облучения, однако, обобщая все имеющиеся данные, можно сделать вывод, что наибольшему разрушению подвергаются фенилаланин, тирозин и гистидин лейцин, изолейцин, валин, серин и треонин почти совершенно не разрушаются под действием излучения. Эти результаты, полученные при облучении коллагена, отличаются от эффектов, наблюдаемых при облучении кератинов и других белков, богатых цистином. В фенилаланиновых, тирозиновых и гистидиновых остатках могут образовываться положительно заряженные центры или участки, обладающие недостатком электронов, которые могут создаваться при непосредственном взаимодействии с частицами высоких энергий или в результате реакций с электрофильными частицами, образующимися в среде под действием излучения. Как указывалось ранее, пептидный карбонил может внутримолекулярно взаимодействовать с этими положительно заряженными центрами, расположенными в боковых цепях, образуя неустойчивые циклические промежуточные продукты, которые затем распадаются, образуя продукты деструкции. Этим предположением может быть объяснено разрушение под действием излучения аминокислотных остатков фенилаланина, тирозина и гистидина. Но лейцин, изолейцин и валин имеют такое строение, которое пространственно затрудняет атаку образованных ими пептидных связей, и этим, в частности, может быть объяснена их устойчивость к действию реакционноспособных осколков, образующихся в среде под действием излучения. [c.436]


    Распад валина происходит путем цепи ферментативных реакций, сходных с реакциями, участвующими в обмене лейцина, однако конечные продукты превращений этих аминокислот различны. Уже давно известно, что валин служит источником образования гликогена [427—430]. Судя по данным опытов с исполь- [c.360]

    Вследствие относительной стабильности некоторых пептидных связей для осуществления полного гидролиза белков или пептидов до индивидуальных аминокислот требуются жесткие условия, такие, как нагревание в течение 70 ч с 6 н. НС1 в эвакуированной запаянной ампуле. В этих условиях триптофан почти полностью разлагается, причем скорость его распада увеличивается в присутствии углеводов и других карбонилсодержащих соединений [43]. В аналогичных условиях наблюдается некоторое разложение лейцина, аспарагиновой кислоты, пролииа, но этого можно избежать при добавлении фенилгидроксиламина [59]. Для полного гидролиза более стабильных пептидов, содержапщх, например, валин и изолейцин, необходимо увеличение времени гидролиза. При этом наблюдается значительная потеря других аминокислот, в частности цистина, серина и треонина [66, 132]. В тех случаях, когдалеобходимо измерить степень разложения отдельных аминокислот, постепенно увеличивают продолжительность гидролиза. Если время гидролиза химотринсиногена (5 и. HG1, 110° С, запаянная эвакуированная ампула) увеличивают с 24 до 72 ч, то количество определяемого пролина увеличивается на [c.391]

    Так, при первом же исследовании продуктов распада казеина Фишер, помимо пролина, обнаружил аминоизовалериановую кислоту (валин) и фенилаланин, которые до этого в казеиновых гидролизатах ни разу не были найдены. Результаты дальнейших исследований подкрепили эти первые открытия. В частности, Фишер показал, что серин является одним из весьма распространенных продуктов распада белковых веществ. Он смог это окончательно доказать, разработав специальный метод отделения эфира серина, используя плохую растворимость последнего В петролейном эфире. [c.76]

    Валин содержится в белках в небольших количествах. Валин не синтезируется в животном организме, а освобождается лишь при гидролитическом распаде белков. [c.21]

    В ходе расшифровки аминокислотной последовательности часто прибегают к анализу аминокислотного состава соответствующих белковых фрагментов после их кислотного гидролиза. Для этой цели предпочтительно пользоваться современным автоматическим аминокислотным анализатором. Однако, поскольку необходимые меры предосторожности при проведении гидролиза соблюдаются не всегда, полученные результаты могут быть ошибочными. Обычно воспроизводимые результаты получаются в том случае, когда гидролиз ведут в запаянных ампулах (из которых тщательно откачен воздух), содержащих 1—5 мг белка и дважды перегнанную 6 н. НС1 при хорошо контролируемом нагревании до 108°. Однако различные белки или пептиды различаются между собой по скорости, с которой происходит при гидролизе разрушение серина, треонина, а иногда и тирозина. С неодинаковой скоростью происходит и высвобождение изолейцина, лейцина и валина. Только проводя гидролиз в течение различных промежутков времени и экстраполируя затем данные об аминокислотном распаде к нулевой [c.66]

    На рис. 24.8 представлены пути окислительного распада аминокислот с разветвленной цепью — кетогенной аминокислоты лейцина, а также валина и изолейцина, являющихся одновременно кетогенными и гликогенными. В процессе метаболических превращений валина происходит образование сукцинил-КоА, который через цикл ТКК и при участии некоторых других ферментов может превратиться в пируват, а затем в глюкозу. В то же время лейцин дает непосредственно кетопродукт ацетоацетат и, кроме того, аце-тил-КоА, из которого также может образовываться ацетоацетат. Изолейцин дает ацетил-КоА и пропионил-КоА. Через метилмалонил-КоА пропи-онил-КоА превращается в сукцинил-КоА, и, следовательно, его надлежит считать гликогенным, а так как ацетил-КоА — кетогенное соединение, то изолейцин можно отнести одновременно к обеим категориям. [c.379]

    Обмен пропионовой кислоты. В организме преобладают жирные кислоты с четным числом углеродных атомов. Из жирных кислот с нечетным числом углеродных атомов, имеющихся в организме в небольшом количестве, на завершающей стадии р-окисления образуется пропионил-КоА. Кроме того, пропионил-КоА образуется при распаде некоторых аминокислот (валина, изолейцина, треонина, метионина). Пропионил-КоА окисляется по особому пути (см. рис. 8.15). [c.291]

    Сукцинил-СоА является тем соединением ( пунктом входа ), в виде которого происходит включение в цикл трикарбоновых кислот некоторых углеродных атомов метионина, изолейцина, треонина и валина. Промежуточным продуктом, образующимся при распаде этих четырех аминокислот, служит метилмалонил-СоА (рис. 18.11). [c.169]

    Описано свыше 50 случаев редкого аутосомно-рецессив-ного нарушения (открытого в 1954 г.), при котором моча больного и выдыхаемый им воздух имеют запах кленового сиропа . В моче обнаруживаются высокие концентрации а-кетокислот с разветвленной цепью, образующихся при переаминировании валина, лейцина и изолейцина. Характерный запах бывает обусловлен продуктами распада этих кислот. Биохимический дефект кроется в ферменте, катализирующем окислительное декарбоксилирование кетокислот, как указано на рис. 14-11. [c.116]

    Аминокислоты с разветвленной боковой цепью, валин, лейцин и изо лейцин, часто распадаются в организме следующим образом. Пере аминирование приводит к образованию а-кетокислоты, которая под вергается окислительному декарбоксилированию с 06pa30BaHnei ацил-СоА-производного. Последнее затем подвергается р-окисле нию. Какие продукты в этом случае образуются из изолейцина Каким образом они затем превращаются в СО2 Какие затрудненш могут встретиться при катаболизме валина и лейцина Попытай тесь предложить рациональную схему соответствующих ката боли ческих путей. Сравните свои предложения с реально установленны ми путями, приведенными на рис. 14-11. [c.357]

    Приведенными примерами, вероятнее всего, не ограничиваются биологические функции тиамина. В частности, ТПФ участвует в окислительном декарбоксилировании глиоксиловой кислоты и а-кетокислот, образующихся при распаде аминокислот с разветвленной боковой цепью в растениях ТПФ является эссенциальным кофактором при синтезе валина и лейцина в составе фермента ацетолактатсинтетазы. [c.222]

    Состояние белкового обмена целостного организма зависит не только от количества принимаемого с пищей белка, но и от качественного состава его. В опытах на животных было показано, что получение одинакового количества разных пищевьгх белков сопровождается в ряде случаев развитием отрицательного азотистого баланса. Так, скармливание равного количества казеина и желатина крысам приводило к положительному азотистому балансу в первом случае и к отрицательному—во втором . Имел значение различный аминокислотный состав белков, что послужило основанием для предположения о существовании в природе якобы неполноценных белков. Оказалось, что из 20 аминокислот в желатине почти отсутствуют (или содержатся в малых количествах) валин, тирозин, метионин и цистеин кроме того, желатин характеризуется другим, отличным от казеина процентным содержанием отдельных аминокислот. Этим можно объяснить тот факт, что замена в питании крыс казеина на желатин приводит к развитию отрицательного азотистого баланса. Приведенные данные свидетельствуют о том, что различные белки обладают неодинаковой пищевой ценностью. Поэтому для удовлетворения пластических потребностей организма требуются достаточные количества разных белков пищи. По-видимому, справедливо положение, что, чем ближе аминокислотный состав принимаемого пищевого белка к аминокислотному составу белков тела, тем выше его биологическая ценность. Следует, однако, отметить, что степень усвоения пищевого белка зависит также от эффективности его распада под влиянием ферментов желудочно-кишечного тракта. Ряд белковых веществ (например, белки шерсти, волос, перьев и др.), несмотря на их близкий аминокислотный состав к белкам тела человека, почти не используются в качестве пищевого белка, поскольку они не гидролизуются протеиназами кишечника человека и большинства животных. [c.413]

    В последние годы вьыснено, что время полужизни белков детерминировано природой его N-концевой аминокислоты. Если она легко соединяется с убиквитином — небольшим белком с молекулярной массой 8,5 kDa, состоящим из 74 аминокислотных остатков, то такой убиквитированный белок атакуется протеиназами и разрушается. Наиболее подвержены убиквитированию аргинин, лизин, аспарагиновая кислота, аспарагин, триптофан, лейцин, фенилаланин, гистидин, глутаминовая кислота, тирозин, глутамин, изолейцин менее подвержены — метионин, серин, аланин, треонин, валин, глицин, цистеин, их относят к стабилизирующим гидролитический распад белков. [c.369]

    При Р-окислении жирных кислот с разветвленной цепью, имеющих четное или нечетное число углеродных атомов, в основном образуются изобутирил-Коа или изовалерил-КоА соответственно. Хотя показано, что митохондрии животных путем р-окисления превращают изокапроновую кислоту в изомасляную, значение этих реакций неясно, поскольку жирные кислоты с разветвленной цепью не встречаются в природе в сколько-нибудь значительных количествах. Вероятно, основным источником жирных кислот с разветвленной цепью служат реакции распада трех аминокислот с разветвленной цепью — изолейцина, валина и лейцина. [c.320]

    На фиг. 138—140 показаны пути окислительного распада валина, лейцина и изолейцина. Первые три этапа этих путей совпадают. Затем пути расходятся, но во всех случаях на более поздних этапах наблюдается отчетливое сходство с реакциями окисления жирных кислот. Отметим образование р-окси-Р-метилглутарил-SKoA при окислении лейцина. Это соединение — важный промежуточный продукт в синтезе холестерина и других стероидов из ацетил-SKo А (см. гл. XVI). [c.447]

    Джекобе н Крэйг [50] получили при щелочном распаде различных алкалоидов спорыньи i,3-диметилпировино-градную кислоту или пировиноградную кислоту вместе с аммиаком и предположили, что они возникают при дезаминирующем распаде остатков нестабильного а-окси-валина и а-оксиаланина. Так как пировиноградная кислота может возникнуть при щелочном распаде серина, проще постулировать в качестве предшественников этих кетокислот f -оксивалин и серии [51]. [c.51]

    Углеродный скелет аминокислот, подвергшихся деградации и включившихся в цикл трикарбоновых кислот в мышечной ткани, превращается главным образом в глутамин и пируват, который далее окисляется или превращается в лактат. Таким образом, при голодании или в период после всасывания большая часть образующихся в процессе распада мышечного белка аминокислот покидает мышцы исключением являются изолейцин, валин, глутамат, аспартат и аспарагин они участвуют в образовании глутамина, который высвобождается мышцами и используется другими тканями. [c.341]

    Длина пептидов, которые можно анализировать методом масс-спектрометрии электронного удара, определяется главным образом их летучестью, и обычно число аминокислотных остатков в таких соединениях не превышает десяти. В случае пептидов, построенных преимущественно из остатков небольших гидрофобных аминокислот (глицина, валина, аланина), достаточно летучими могут оказаться и двадцатичленные соединения. Удается анализировать масс-спектрометрически и более крупные пептиды, но лишь в том случае, если в ионном источнике они могут термически распадаться на мелкие хорошо летучие фрагменты, аминокислотная последовательность которых устанавливается по масс-спектру. [c.515]


Смотреть страницы где упоминается термин Валин распад: [c.178]    [c.55]    [c.116]    [c.546]    [c.391]    [c.77]    [c.239]    [c.362]    [c.448]    [c.449]    [c.300]    [c.47]    [c.87]    [c.502]    [c.264]    [c.60]    [c.291]   
Основы биологической химии (1970) -- [ c.447 , c.448 ]




ПОИСК





Смотрите так же термины и статьи:

Валин



© 2024 chem21.info Реклама на сайте