Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жиры биосинтез

    Биологическое окисление — источник энергии живых организмов. Окислительные превращения охватывают все виды питательных веществ белки, углеводы и жиры, которые распадаются под влиянием ферментов пищеварительного тракта на аминокислоты, моносахариды, глицерин и жирные кислоты. Продукты расщепления образуют метаболический фонд биосинтеза и получения энергии. [c.320]


    В связи с этим, здесь же следует обсудить такой вопрос, как целесообразность биосинтеза тех или иных веществ в живой клетке. Если в отношении продуктов первичного биосинтеза, в основном, все понятно функции белков, нуклеиновых кислот, углеводов и жиров достаточно ясны и многообразны — то относительно наших знаний о роли продуктов вторичного метаболизма в жизнедеятельности организмов, их продуцирующих, этого сказать нельзя. Бытует даже такое мнение, что эти вещества — отбросы жизнедеятельности живых клеток. Безусловно, такие [c.7]

    Синтез белка подчиняется закону все или ничего и осуществляется при условии наличия в клетке полного набора всех 20 аминокислот. Даже при поступлении всех аминокислот с пищей организм может испытывать состояние белковой недостаточности, если всасывание какой-либо одной аминокислоты в кишечнике замедлено или если она разрушается в большей степени, чем в норме, под действием кишечной микрофлоры. В этих случаях будет происходить ограниченный синтез белка или организм будет компенсировать недостаток аминокислоты для биосинтеза белка за счет распада собственных белков. Степень усвоения белков и аминокислот пищи зависит также от количественного и качественного состава углеводов и липидов, которые резко сокращают энергетические потребности организма за счет белков. Экспериментальный и клинический материал свидетельствует, что диета с недостаточным содержанием жиров и низкокалорийная пища способствуют повышению экскреции аминокислот и продуктов их распада с мочой. [c.412]

    Реакционноспособным участком молекулы КоА в биохимических реакциях является 8Н-группа, поэтому принято сокращенное обозначение КоА в виде 8Н-КоА. О важнейшем значении КоА в обмене веществ (как будет показано далее—см. главы 9—11) свидетельствуют обязательное непосредственное участие его в основных биохимических процессах, окисление и биосинтез высших жирных кислот, окислительное декарбоксилирование а-кетокислот (пируват, а-кетоглутарат), биосинтез нейтральных жиров, фосфолипидов, стероидных гормонов, гема гемоглобина, ацетилхолина, гиппуровой кислоты и др. [c.237]

    При длительном голодании запасы гликогена во всем организме истощаются и главным топливом становятся жиры. Глюкозы и пирувата хватает лишь на короткое время. Хотя гидролиз липидов и приводит к образованию некоторого количества глицерина (который окисляется до диоксиацетона и фосфорилируется), количество предшественников глюкозы, образованных этим путем, ограничено. (Следует при этом иметь в виду, что организм животного не может превращать аце-тил-СоА обратно в пируват.) Таким образом, потребность в глюкозе и в пирувате сохраняется. Первое из этих соединений необходимо для процессов биосинтеза, а второе играет важную роль в качестве предшественника оксалоацетата — субстрата, регенерирующегося в цикле трикарбоновых кислот. В результате всего этого в процессе голодания организм вынужден перестроить свой метаболизм. Надпочечники выделяют глюкокортикоиды (например, кортизол гл. 12, разд. И, 3,6). Через механизмы индукции ферментов эти гормоны повышают количество различных ферментов в клетках органов-мишеней, таких, как, например, печень. Глюкокортикоиды повышают, кроме того, чувствительность клеточных рецепторов к циклической АМР, а следовательно, и к таким гормонам, как глюкагон [57]. Было высказано предположение, согласно которому этот эффект обусловлен тем, что кортикоиды обеспечивают сохранение нормального ионного окружения, и в частности нормальных концентраций ионов Са +, К и Na+. [c.515]


    Для жизнедеятельности организма человека н животных необходимы белки, жиры и углеводы, являющиеся пластическими и энергетическими материалами, а также минеральные соли н витамины. Среди жиров и продуктов гидролиза белков имеются незаменимые органические вещества, поступление которых должно обеспечиваться с пищей, так как они не синтезируются организмом. По-видимому, по мере эволюционного развития животного мира отдельные виды постепенно теряли способность к биосинтезу некоторых простых органических соединений, участвующих в метаболических процессах, так как более эффективным для организма путем они могли получить их из окружающей органической природы — растений и микроорганизмов или с животной пищей. К таким органическим соединениям относятся незаменимые -аминокислоты, незаменимые ненасыщенные жирные кислоты, а также витамины (термин витамины предложен Функом [2]). На необходимость для питания таких факторов ( витаминов ), не синтезируемых животными, указывал Лунин [3]. Для человека незаменимыми оказались восемь -аминокислот (из 20) валин, лейцин, изолейцин, лизин, треонин, метионин, фенилаланин триптофан [4]. Для животных незаменимых аминокислот значительно больше, например для крысы —11. [c.5]

    Обмен фосфатидов тесно связан с обменом жиров, однако, в отличие от жиров, биосинтез и распад фосфатидов в растениях изучены в значительно меньшей степени. Важная роль фосфатидов в протоплазме клеток, в обмене веществ и прежде всего в регуляции проницаемости протоплазмы для различных веществ заставляет в последнее время предпринять детальное изучение их биосинтеза и распада. [c.325]

    Мобилизация гликогена Мобилизация жиров Биосинтез глюкозы [c.300]

    В последующих разделах будут рассмотрены главным образом процессы обмена трех важнейших для питания человека классов соединений углеводов, жиров и белков. Биосинтез других природных веществ — алкалоидов, терпенов и стероидов был уже кратко описан в соответствующих предшествующих разделах 3.5.1 и 3.7.8. [c.698]

    В обмене жиров важную роль играет печень, где идет расщепление и биосинтез жиров. Если нарушается баланс между этими процессами, то наступает жировое перерождение клеток печени - цирроз, причиной которого могут быть отравление алкоголем, галоидными веществами, недостаток белка в пище, инфекционные заболевания, рак печени, сахарный диабет. [c.115]

    Необходимо отметить, что ацетил-КоА образуется и при катаболизме жиров, I. e. это соединение объединяет метаболические пути углеводов н жиров. Ацетил, переносимый коферментом А, как в клетках животных, так и растений, далее используется в биосинтезе или окисляется до Oi и HjO. [c.340]

    Некоторым тритерпеновым сапонинам свойствен еще один важный тип физиологического действия — способность регулировать обмен липидов. У млекопитающих биосинтез и распад жиров, холестерина и других неполярных веществ имеет важное значение и осуществляется, главным образом, в печени. Нарушения липидного метаболизма проявляются в развитии таких заболеваний, как атеросклероз, гепатит и цирроз печени, желчные камни [c.253]

    Актиномицеты могут усваивать сахара, органические кислоты, спирты, крахмал, декстрины, жиры, но интенсивное накопление антибиотиков у них наблюдается лишь на средах с определенными источниками углерода. Как видно из материалов, представленных в главе I, для биосинтеза полиеновых антибиотиков чаще всего используются глюкоза, крахмал, ре- [c.154]

    Карбоновые кислоты с длинными цепями встречаются в жирах, которые представляют собой природные эфиры этих кислот с глицерином (Н0СН2СН(ОН)СИ2ОН). Вот почему эти кислоты часто называют жирными кислотами. Наиболее распространенными жирными кислотами являются пальмитиновая и стеариновая ( ie- и ig-кислоты соответственно). Примером биологической роли кофермента А может слу кить его участие в биосинтезе стеариновой кислот1Л (рис. 19-4). [c.137]

    Имеются данные и об отрицательном действии некоторых жиров на биосинтез антибиотиков. Подсолнечное масло угнетает биосинтез нистатина, и его угнетающее влияние возрастает при увеличении концентрации неорганического фосфора в среде (Попова, Степанова, 19626). [c.156]

    Растения и большая часть микроорганизмов, получающих из окружающей среды ограниченный набор исходных соединений, должны располагать этими системами. Для животных, в особенности высших, которые получают большой набор веществ, необходимых в качестве строительных элементов и энергетических ресурсов, в виде растительной или животной пищи, наличие многих из систем биосинтеза кофакторов и коферментов является ненужным излишеством. Либо сами кофакторы и коферменты, либо их близкие предшественники могут быть получены вместе с продуктами питания. Это означает, что вместе с основными компонентами — белками, жирами, углеродами — в продуктах питания животного должны присутствовать в очень небольших количествах, измеряемых миллиграммами или даже долями миллиграммов, все те коферменты и кофакторы, пути синтеза которых у данного вида животных отсутствуют, или вещества, легко их образующие. Речь идет именно о крайне малых количествах, поскольку, поступив в организм, эти соединения работают циклически и пополнение их запаса нужно лишь в связи с некоторыми неизбежными потерями. [c.153]


    Неомыляемые липиды. — При омылении ткани мозга жиры, белки, фосфолипиды и сложные липиды в значительной степени превращаются в водорастворимые, но нерастворимые в эфире вещества. Экстракция эфиром щелочной смеси, образующейся в результате омыления, дает неомыляемую липидную фракцию, содержащую холестерин (строение и конформацию — см. том I 5.12) и небольшое количество сопутствующих стероидов. Холестерин образуется при омылении всех тканей тела, включая и кровь, в 100 которой обычно содержится около 200 м.г холестерина. Около 27% холестерина в крови находится в свободном состоянии, остальное количество этерифици-ровано жирными кислотами ie и ie. Общее количество холестерина, содержащегося в организме человека весом 65 кг, составляет около 250 г. Он образуется в организме в результате биосинтеза, а также (у плотоядных животных) постушает с пищей. [c.639]

    Если расщепление жиров преобладает, что происходит в отсутствие углеводов, цитрат, синтезированный в митохондриях из ацетил-КоА и оксалоацетата, транспортируется в цитоплазму, где используется для биосинтеза глюкозы и, следовательно, возможность его окисления в цикле ТКК снижается. При таких условиях метаболизм ацетил-КоА в митохондриях идет преимущественно по пути кетогенеза. Таким образом, кетогенез возникает прежде всего в результате недостатка углеводов, и это обстоятельство на всех трех стадиях регуляции биосинтеза кетоновых тел является решающим фактором. [c.338]

    Все сложные биосинтетические вещества образуются из простейших химических соединений вроде СО2, Н2О, КНз и др. Жизненный процесс переводит эти соединения в сложнейшие вещества, характеризующие живое вещество, например, в клетчатку, белки, жиры, лигнин, порфирины и другие вещества, существующие и развивающиеся в результате однажды направленного биосинтеза. Гибель живого вещества прежде всего разрушает те связи между элементами, которые, собственно говоря, и являются признаком жизни, и тогда начинается рертоградная эволюция в исходные простые химические соединения. Если нефть происходит из живого вещества, то ее углеводородный характер является лишь одним из начальных этапов превращения сложных гетерогенных соединений в более простые и относительно устойчивые соединения углеводородного типа. [c.202]

    Некоторые жиры содержат глицериды только трех или четырех различных кислот, другие — значительно больше. Например, коровье масло содержит производные четырнадцати кислот, в число которых входит н-масля ная кислота. Изомасляная кислота, имеюш ая разветвленную цепь с нечетным числом углеродных атомов в главной цепи (скелет изопрена), была выделена при омылении дельфиньей и китовой ворвани (3,2 и 13,6% соответственно). Степень ненасыщенности жира заметно зависит от температуры, при которой протекает биосинтез в организме. Теплокровные животные имеют тенденцию продуцировать твердые жиры (жидкие при температуре тела или немного выше ее). В составе жиров, синтезируемых в различных частях одного и того же органи.зма, могут на блюдаться некоторые различия. Так, масло выделенное из копыт крупного рогатого окота, имеет более высокое йодное число, чем жиры, выделенные из других частей тела. Отмечена неоднородность подкожного жира свиней, внешние слои которого обладают большей ненасьащенностью, чем внутренние. Следующее сравнение показывает поразительное влияние климата на состав льняного масла йодное число льняного масла из семян, выращенных в холодном климате Швейцарии, разно 190, а йодное число масла [c.588]

    Для приготовления питательных сред в микробиологической промышленности используют сырье минеральное, животного и растительного происхождения, а также синтезированное химическим путем. Эти веш,ества, входя в состав питательной среды, обеспечивают развитие культуры и биосинтез определенных продуктов. Они не должны содержать вредных примесей. При выборе сырья необходимо учитывать его влияние на себестоимость, так как в микробиологическом синтезе важное значение имеет стоимость исходных веществ и материалов. В качестве источников углерода чаще всего используют углеводы (глюкоза, сахароза, крахмал, лактоза) или богатые углеводами натуральные продукты (меласса, кукурузная мука, гидроль и др.), а также жиры и даже вещества, содержащие углеводороды (нефть, парафин, керосин, природный газ, метан и др.). Источником азота обычно бывают неорганические соли — сульфат аммония, двузамещенный фосфат аммония, аммиак, нитраты, а также мочевина или натуральные продукты — кукурузный экстракт, соевая мука, дрожжевой автолизат и т. д. [c.75]

    Соотношение между липофильной углеводородной частью и гидрофильной ионной группировкой в амидных солях типа I таково, что эти соли являются поверхностно-активными агентами, способными в водной среде переводить липиды в коллоидные дисперсии. Желчь, поступающая в кишечник, Эмульгирует нейтральные -жиры и липоидные витамины пищи и тем самым облегчает их проникновение через стенки кишечника в кровь. Исследования, проведенные с использованием изотопной метки, показали, что холестерин яв1яется предшественником в биосинтезе желчных кислот и стероидных гормонов, однако желчь в нормальном организме содержит лишь следы свободного холестерина. В организме человека, а также некоторых животных, запас желчи накапливается в желчном пузыре, связанном с печенью (человек, овцы, крупный рогатый скот) или расположенном внутри печени (акула). [c.639]

    Обратный процесс-биосинтез углеводов из жиров-для животных не характерен. У растений и микроорганизмов он протекает в глиоксилатном цикле. В последнем из образующегося в результате расщепления жирных к-т АцКоА синтезируется сукцинат, к-рый в результате р-ций окисления и декарбоксилирования превращ. в фосфоенолпируват. Далее из фосфоенолпирувата на амфиболич. участке пути гликолиза образуются углеводы. [c.315]

    Катаболич. путь утилизации АцКоА состоит в окислении содержащегося в нем остатка уксусной к-ты в цикле трикарбоновых к-т до СО2 и воды. При дефиците углеводов АцКоА для осуществления их биосинтеза образуется в результате расщепления жирных к-т или нек-рых аминокислот. Т. обр., у мн. организмов цикл трикарбоновых к-т служит общим завершающим механизмом окисления углеводов, жиров и белков. В то же время у растений в условиях фотосинтеза т.наз. обращенный цикл трикарбоновых к-т может, подобно пентозофосфатному циклу, выполнять анаболическую функцию - превращ. СО2 в органические соединения. [c.315]

    При введении радиоактивного изотопа в виде простого химического соединения в живой организм образуются более сложные продукты, содержащие радиоактивный атом. Биосинтетический способ получения меченых соединений применяют в тех случаях, когда химический синтез этих веществ слишком сложен. Этот способ был использован для метки многих природных соединений, например белков, полисахаридов, нуклеиновых кислот, пуринов, пиримидинов, витаминов, гормонов, стероидов, алкалоидов, терпенов, карбоновых кислот, аминокислот, жиров и жирных кислот из радиоизотопов чаще всего применяют и Р -. Биосинтезы приводят обычно к неспецифически меченным соединениям с низким выходом требуемого продукта. Однако, если большая часть образующихся меченых соединений может быть использована для различных целей, то их биосинтез экономически выгоден. [c.683]

    Количество экстрактивных веществ и их состав в образцах коры зависят не только от древесной породы, но и от условий произрастания дерева, его возраста, места взятия образца коры (корни, ветви, ствол, по высоте ствола) и срока его хранения. Содержание некоторых компонентов экстрактивных веществ подвергается сезонным изменениям. Состав и количество экстрактивных веществ различны для внутреннехо и внешнего слоев коры. Флоэма содержит больше резервных питательных веществ и промежуточных продуктов биосинтеза, способных транспортироваться клеточным со- ом, т.е. жиров, углеводов, гликозидов, белков и т.п., тогда как в корке концентрируются воски и фенольные соединения. [c.528]

    Биосинтез триглицеридов из глицерина (или глицеральдегида, или дигидроксиацетона) включает стадию образования фосфатидных кислот и а,р-диглицеридов. Каждая стадия ацилирования протекает под действием отдельного фермента. Альтернативный путь, включающий переацилирование 2-0-ацилглицерина, который образуется путем липолиза триглицеридов, в значительной степени осуществляется у животных, получающих в корме жиры. [c.104]

    Предположение об образовании жирных кислот из ацетатных цепей было основано на том, что их цепи состоят преимущественно нз четного числа атомов углерода, а также на результатах ранних работ по их метаболическому расщеплению путем р-окисления. С химической точки зрения этот процесс заключается в окислении кислот до Р-кетоацильных производных, от которых ацетат отщепляется по реакции, обратной конденсации Клайзена при этом получается более короткая цепь, и затем весь процесс может быть повторен. С точки зрения химика эти реакции потенциально обратимы и в обращенном виде в принципе могут быть процессом биосинтеза. В действительности биосинтез редко осуществляется путем, в точности обратным пути катаболизма. Тем не менее заключение о возможности синтеза жиров из ацетата было полезным предположением, принципиальная справедливость которого была доказана в одних из самых первых экспериментов с мечеными соединениями-предшественниками [10] различие между путями синтеза и деградации выяснилось значительно позже. [c.412]

    Существует два основных пути биосинтеза липидов. Первый путь основан на синтезе жирных кислот из ацетилкофермента А с да п.пейшим превращением их в жиры, воска, фосфолипиды и некоторые другие более снедиализированные био-376 [c.376]

    Органическое вещество в сапропеле малой степени разложения составляет больше половины сухой массы — до 68%, а в минерализованном — 35—40%. Содержание белковых веществ составляет 10—18% в пересчете на сухое вещество, жиров 0,3— 0,5%, клетчатки 1—6%, целлюлозы 10—50%. Характерной особенностью химического состава органической массы сапропеля является содержание до 17—60% гуминовых и фульвокислот и битумов (7 157о). Сапропель является хорошим источником витаминов. Вытяжка или гидролизаты сапропеля заменяют кукурузный экстракт при биосинтезе. Кроме того, как известно, сапропель — лечебная грязь, кормовая добавка и хорошее удобрение для почвы. [c.83]

    СТГ обладает широким спектром биологического действия. Он влияет на все клетки организма, определяя интенсивность обмена углеводов, белков, липидов и минеральных веществ. Он усиливает биосинтез белка, ДНК, РНК и гликогена и в то же время способствует мобилизации жиров из депо и распаду высших жирных кислот и глюкозы в тканях. Помимо активации процессов ассимиляции, сопровождающихся увеличением размеров тела, ростом скелета, СТГ координирует и регулирует скорость протекания обменных процессов. Кроме того, СТГ человека и приматов (но не других животных) обладает измеримой лактогенной активностью. Предполагают, что многие биологические эффекты этого гормона осуществляются через особый белковый фактор, образующийся в печени под влиянием гормона. Этот фактор был назван сульфирующим или тимидиловым, поскольку он стимулирует включение сульфата в хрящи, тимидина—в ДНК, уридина—в РНК и пролина—в коллаген. По своей природе этот фактор оказался пептидом с мол. массой 8000. Учитывая его биологическую роль, ему дали наименование соматомедин , т.е. медиатор действия СТГ в организме. [c.259]

    При недостаточной секреции (точнее, недостаточном синтезе) инсулина развивается специфическое заболевание—диабет (см. главу 10). Помимо клинически выявляемых симптомов (полиурия, полидипсия и полифагия), сахарный диабет характеризуется рядом специфических нарушений процессов обмена. Так, у больных развиваются гипергликемия (увеличение уровня глюкозы в крови) и гликозурия (выделение глюкозы с мочой, в которой в норме она отсутствует). К расстройствам обмена относят также усиленный распад гликогена в печени и мышцах, замедление биосинтеза белков и жиров, снижение скорости окисления глюкозы в тканях, развитие отрицательного азотистого баланса, увеличение содержания холестерина и других липидов в крови. При диабете усиливаются мобилизация жиров из депо, синтез углеводов из аминокислот (глюконеогенез) и избыточный синтез кетоновых тел (кетонурия). После введения больным инсулина все перечисленные нарушения, как правило, исчезают, однако действие гормона ограничено во времени, поэтому необходимо вводить его постоянно. Клинические симптомы и метаболические нарушения при сахарном диабете могут быть объяснены не только отсутствием синтеза инсулина. Получены доказательства, что при второй форме сахарного диабета, так называемой инсулинрезистентной, имеют место и молекулярные дефекты в частности, нарушение структуры инсулина или нарушение ферментативного превращения проинсулина в инсулин. В основе развития этой формы диабета часто лежит потеря рецепторами клеток-мишеней способности соединяться с молекулой инсулина, синтез которого нарушен, или синтез мутантного рецептора (см. далее). [c.269]

    Биосинтез жиров в природе происходит по механизмам, предопределяющим наличие в жирах остатков кислот с нераз-ветвлённым скелетом и чётным числом атомов углерода (от четырёх до двадцати четырёх)  [c.123]

    Витамины были открыты в конце XIX столетия во многом благодаря работам русских ученых Н. И. Лунина и В, В. Пашутина, впервые показавших необходимость для полноценного питания кроме белков, углеводов, жиров и еще каких-то неизвестных веществ. В 1912 г польский ученый К. Функ, изучая компоненты, входящие в состав шелухи риса и предохраняющие от болезни бери-бери, и полагая, что в их состав обязательно должны входить аминные группировки, предложил называть эти неизвестные вещества витаминами, т. е. аминами жизни. В дальнейшем было установлено, что многие из них аминных групп не содержат, но термин витамин прижился в науке и практике. В природе биосинтез витаминов осуществляется растениями и микроорганизмами, причем некоторые витамины в растениях также принимают участие в процессах биокатализа. [c.92]


Смотреть страницы где упоминается термин Жиры биосинтез: [c.19]    [c.25]    [c.278]    [c.300]    [c.18]    [c.135]    [c.383]    [c.119]    [c.679]    [c.19]    [c.19]    [c.156]    [c.216]    [c.42]    [c.150]    [c.137]    [c.414]   
Основы биохимии Т 1,2,3 (1985) -- [ c.621 , c.622 , c.623 , c.624 , c.625 , c.626 , c.627 , c.628 , c.629 , c.630 , c.631 , c.632 , c.633 , c.634 , c.635 , c.636 , c.637 , c.638 , c.639 , c.640 , c.641 , c.642 , c.643 , c.644 , c.645 , c.646 , c.647 , c.648 , c.649 , c.650 , c.651 , c.761 ]




ПОИСК







© 2025 chem21.info Реклама на сайте