Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Превращения валина

    Основная масса больщинства аминокислот проходит в реакциях обмена через стадии превращений в глутаминовую или аспарагиновую кислоты или аланин. Содержание амидов и этих трех аминокислот в белках, особенно в белках растений, обычно не менее 30%, а в некоторых белках, например в глиадине пшеницы, превышает 50% общего количества аминокислот. Кроме того, в процессах обмена эти три аминокислоты могут синтезироваться из других аминокислот. Глутаминовая кислота образуется из пролина, орнитина и гистидина, аланин— из триптофана, цистина, серина и т. д. Количество этих аминокислот, объединяемых системой дикарбоновых аминокислот, также составляет не менее 30% аминокислот, входящих в состав белковых молекул. Таким образом, не менее 60% аминокислот, содержащихся в молекуле белка, составляют глутаминовая и аспарагиновая кислоты, их амиды, аланин и аминокислоты, связанные с ними прямыми переходами в обмене веществ. Кроме того, аминогруппы других аминокислот, например валина, лейцина, изолейцина, глицина, в результате переаминирования могут переходить на кетоглутаровую кислоту и образовывать глутаминовую кислоту. Следовательно, доля азота, подвергающаяся обмену через эту систему, еще более увеличивается. Эти данные также показывают центральную роль дикарбоновых аминокислот в обмене веществ. [c.257]


Фиг. 15. Сводная схема превращений изолейцина, лейцина и валина. Фиг. 15. <a href="/info/627402">Сводная схема превращений изолейцина</a>, лейцина и валина.
    Аминокислоты, которые не синтезируются в результате биохимических превращений в организме (и поэтому организм получает их исключительно с пищей), называются незаменимыми аминокислотами. Для человека это валин, лейцин, изолейцин, лизин, метионин, треонин, фенилаланин и триптофан. [c.187]

    Как осуществить синтез глицил-аланил-валина Написать схему превращений. [c.99]

    Пути распада валина, изолейцина и лейцина изучены в опытах с тканями млекопитающих. По-видимому, превращения этих аминокислот аналогичны все они подвергаются переаминированию с образованием соответствующих а-кетокислот и затем необратимому окислительному декарбоксилированию с превращением остатков скелета в соответствующие ацилпроизводные кофермента А. В ранних исследованиях было установлено, что при превращении лейцина и изовалерьяновой кислоты в организме млекопитающих образуются кетоновые тела [413—415]. Отдельные этапы превращения лейцина в ацетоуксусную кислоту были выяснены при помощи изотопных методов и в последнее время — в исследованиях с ферментами. В опытах с изотопным углеродом установлено, что атомы С-1 и С-2 изовалерьяновой кислоты, соответствующие а- и р-углеродным атомам молекулы лейцина, дают начало двухуглеродным остаткам, которые могут конденсироваться с образованием ацетоуксусной кислоты [416—419]. Углеродные атомы метильных групп изо-пропильного остатка становятся углеродными атомами метильной и метиленовой групп ацетоуксусной кислоты. -у-Углеродный атом молекулы лейцина (или атом С-3 изовалерьяновой кислоты) переходит в карбонильный углерод ацетоуксусной кислоты. При этих исследованиях было доказано также включение СОг в карбоксильную группу ацетоуксусной кислоты [418, 420]. Ферментативные опыты Куна и сотрудников [421—423, 1102] привели к установлению представленных ниже промежуточных продуктов и реакций  [c.358]

    Распад изолейцина, лейцина и валина изучен в тканях животных. По-видимому, он протекает так, как показано на фиг. 122. Наличие таких же превращений у растений подтверждается следующими данными. [c.429]


    На рис. 24.8 представлены пути окислительного распада аминокислот с разветвленной цепью — кетогенной аминокислоты лейцина, а также валина и изолейцина, являющихся одновременно кетогенными и гликогенными. В процессе метаболических превращений валина происходит образование сукцинил-КоА, который через цикл ТКК и при участии некоторых других ферментов может превратиться в пируват, а затем в глюкозу. В то же время лейцин дает непосредственно кетопродукт ацетоацетат и, кроме того, аце-тил-КоА, из которого также может образовываться ацетоацетат. Изолейцин дает ацетил-КоА и пропионил-КоА. Через метилмалонил-КоА пропи-онил-КоА превращается в сукцинил-КоА, и, следовательно, его надлежит считать гликогенным, а так как ацетил-КоА — кетогенное соединение, то изолейцин можно отнести одновременно к обеим категориям. [c.379]

    При этерификации поливинилового спирта ангидридами соответствующих кислот в присутствии безводного уксуснокислого натрия или пиридина образуются сложные эфиры поливинилового спирта. Этим путем поливиниловый спирт может быть снова превращен в поливинилацетат. В результате полимераналогичных превращений получены формиаты, пропионаты, бутираты, фторацетаты, сульфаты, бензоаты и другие сложные эфиры поливинилового спирта. Интересные оптически активные эфиры поливинилового спирта получены с производными оптически активных аминокислот, например Ь-валином. Из продуктов этерификации поливинилового спирта в иромышленности применяются только эфиры поливинилового спирта, образованные двухосновными кислотами и имеющие, следовательно, пространственное строение. Для получения таких полиэфиров, обладающих хорошей водостойкостью, применяют, например, щавелевую или малеиновую кислоту. [c.235]

    Реакции метилмалонил-СоА-пути могут протекать и в обратном направлении, как, например, при расщеплении валина, изолейцина и жирных кислот с длинной цепью и нечетным числом углеродных ато-мов. Из жирных кислот и изолейцина образуется пропионил-СоА, который карбоксилируется с образованием метилмалонил-СоА. Для превращения последнего в сукцинил-СоА при участии метилмалонил-СоА-мутазы необходим витамин В12 (кофермент B j) это относится и к корневым клубенькам бобовых, и к клеткам Rhizobium, и к животным клеткам, [c.283]

    Распад валина происходит путем цепи ферментативных реакций, сходных с реакциями, участвующими в обмене лейцина, однако конечные продукты превращений этих аминокислот различны. Уже давно известно, что валин служит источником образования гликогена [427—430]. Судя по данным опытов с исполь- [c.360]

    Ниже описаны только реакции, которые приводят к превращению метионина и изолейцина в про-пионил-СоА и к превращению валина в метилмало-нил-СоА. Реакции превращения пропионил-СоА в метилмалонил-СоА и далее в сукцинил-СоА уже обсуждались в гл. 23 в связи с катаболизмом пропионата и жирных кислот с нечетным числом атомов углерода. [c.335]

    Организм человека ограничен в своих возможностях превращать одну аминокислоту в другую. Превращение происходит в печени с помощью процессов транс-аминирования. Посредством трансаминаз аминогруппы переносятся с одной молекулы на другую. В то же время существуют аминокислоты, синтез которых в организме невозможен, и они должны быть получены с пищей это так называемые незаменимые аминокислоты лейцин, изолейцин, лизин, метионин, фенилаланин, треонин, триптофан, валин (для роста детей незаменимой аминокислотой является также гистидин). Только при поступлении таких аминокислот возможно со-.хранить азотистое равновесие. [c.7]

    Образование метилмалоповой кислоты в виде промежуточного продукта превращения нашло свое подтверждение в опытах с содержанием крыс на рационе, богатом валином. Подобный корм вызывал у крыс некроз печени, сопровождавшийся усиленным выделением с мочо] метилма. юново кислоты. Надо полагать, что при некрозе печени превращение валина в организме крыс тормозится на стадии образования метилмалоиово кислоты. [c.370]

    Предложите схему превращения метилового эфира изовалериановой (3-метилбутановой) кислоты в этиловый эфир валина, используя только неорганические реагенты. Напишите уравнения соответствующих реакций. [c.155]

    Диастереоселективные реакции с применением вспомогательных оптически чистых соединений . Под этим понимают последовательность реакций, при которой прохиральное соединение связывается с оптически чистым вспомогательным веществом и затем вводится в диастереосе-лективную реакцию. По окончании последней вспомогательное вешество регенерируют. Здесь речь идет об уже обсуждавшихся принципах диастереоселективных реакций. По сравнению с энантиоселективными реакциями этот принцип имеет то преимущество, что при селективности превращения менее 100% возможна очистка на стадии образования диастереомеров. В качестве вспомогательных хиральных соединений часто используют аминокислоты и их производные, например пролин (П-5) [21] и валин (П-11) [37]. [c.459]

    Для животного организма витамин Вс является важнейшим витамином, входящим в состав ферментов, катализирующих белковый обмен он выполняет важную функцию в превращениях аминокислот. Для каждого животного организма необходимо получать с пищей некоторые аминокислоты (например, для человека незаменимы валин, лейцин, нзолейшш, лизин, треонин, метионин, фенилаланин, триптофан), которые он не в состоянии синтезировать все же другие необходимые аминокислоты синтезируются организмом нз продуктов расщепления белков или из а-кетокислот. [c.355]


    Возможность такого превращения была доказана синтезам ь-лейцил-ь-аланилглицил-ь-валина, который оказался идентичным с образцом, полученным конденсацией через активированные п-и ИТ р офен и лов ые эфи р ы. [c.69]

    Возможность такого превращения была доказана синтезом г-лейцил ь-аланилглицил-г-валина, который оказался идентичным с образцом, полученным конденсацней через активированные п-нитрофениловые эфиры. [c.69]

    Известно, что синтез аминокислот в клетке ведется очень экономно и целенаправленно, под контролем специальных регулирующих систем. Регуляторный контроль обычна осуществляется по принципу обратной связи на уровне начального фермента или ферментов данного специфического пути образования метаболита. В случае значительного повьш1ения уровня конечного продукта (в данном случае лизина) включается механизм регуляции и один из ферментов в цепи последовательных превращений блокируется, синтез прекращается. Цель этого регулирования предотвратить избыточное образование и накопление данного метаболита, потребность в котором организма в настоящий момент полностью удовлетворяется. Но такая безупречная логика синтеза существует лишь у микроорганизмов, не имеющих нарушений и дефектов в этом. механизме. В природных условиях такие нарушения достаточно редки, но они все же встречаются. Например, найдено немало природных микроорганизмов, обладающих способностью к сверхсинтезу глутаминовой кислоты, аланина, валина. В то же время таких продуцентов по лизину, гомосерину, треонину и некоторым другим аминокислотам в природных условиях найдено не было. Для получения промышленных продуцентов пришлось пойти по пути получения мутантов, имеющих генетический дефект [c.26]

    Несмотря на большую летучесть эфиров аминокислот по сравненик с самими кислотами, эти эфиры не могут быть подвергнуты перегонке пр( атмосферном давлении, так как они при этом претерпевают химически( превращения. Например, из метилового эфира валина при нагревании об разуется вещество состава С Н Ы О . Какое строение имеет этот продукт  [c.414]

    При дезаминировании аспарагиновой кислоты, аланина и глутаминовой кислоты образуются а-кетокислоты, принадлежащие к числу промежуточных продуктов обмена углеводов. Введение per os этих аминокислот, а также валина [97, 98], серина [99, 100], глицина [99, 101], треонина [102], аргинина [103, 104],. гистидина [104—106] и изолейцина [104, 107] вызывает у голодающих животных увеличение содержания гликогена в печени. В определенных условиях пролин [104], цистеин [104] и метионин [108] также могут вызывать добавочное образование у леводов, тогда как в результате обмена тирозина (стр. 417), фенилаланина (стр. 425) и лейцина (стр. 359) образуютсл кетоновые тела. Недостаток этих экспериментальных приемов состоит в том, что получаемые результаты касаются обмена аминокислот в нефизиологических условиях не удивительно, что некоторые аминокислоты проявляют при одних условиях гликогене-тическое действие, а при других — кетогенное. Для изучения превращения аминокислот в процессах обмена веществ наиболее удобно вводить изотопную метку в углеродный остов аминокислоты и затем выяснить судьбу меченого углерода путем исследования продуктов обмена. Работы этого рода, относящиеся к отдельным аминокислотам, подробно рассмотрены в гл. IV. [c.181]

    Конфигурационное родство этой аминокислоты с (—)-цистеином и (—)-серином было уже давно определено (Э. Фишер, 1907 г.) нри помощи химических превращений [исходя из (—)-серина], в результате которых не происходит замещения при асимметрическом атоме углерода. Таким образом, все эти аминокислоты относятся к ряду L. Химическими методами было также установлено конфигурационное родство между (—)-серином и другими аминокислотами, полученными из белков (П. Каррер, 1930 г.), как это можно увидеть из приведенной ниже схемы. Установлено также аналогичное конфигурационное родство между L-(—)-аспарагиновой кислотой и следующими природными аминокислотами (—)-лейцином, (4-)-валином, (—)-метионином, (—)-треонином, (-1-)-орпитином, (-f)-лизипом, (—)-пролином и (- -)-глутаминовой кислотой. При помощи подобных методов пришли к заключению, что большинство природных аминокислот имеет ту же конфигурацию, что L-серин и L-аланин, и что, по всей вероятности, это заключение справедливо и для тех немногих а-аминокислот, выделенных из белков, конфигурация которых еще не определена химическим путем (а только оптическим сравнением, например на основании правила Клафа, согласно которому оптическое вращение аминокислот ряда L смещается вправо при добавлении минеральной кислоты). [c.384]

    Углеродные скелеты метионина, изолейцина и валина расщепляются в реакциях, приводящих в конечном счете к сук-цинил-СоА, т.е. к одному из промежуточных продуктов цикла лимонной кислоты (рис. 19-12). Превращения изолейцина и валина протекают сходным [c.583]

    Имеются данные, которые свидетельствуют о том, что синтез изолейцина происходит аналогичным путем. Предполагают, что ацетальдегид, образующийся из пировиноградной кислоты, конденсируется с а-кетомасляной кислотой. Последующие превращения аналогичны реакциям, приведенным выше для валина [398, 403, 405, 406]. Возможно также, что первоначально конденсируются пировиноградная и а-кетомасляная кислоты с образованием семичленного промежуточного продукта, подвергающегося декарбоксилированию после перемещения боковой цепи. При биосинтезе валина также возможна аналогичная конденсация двух молекул пировиноградной кислоты. Данные опытов с мечеными предшественниками согласуются с изложенными выше предположениями, однако выяснение истинной природы промежуточных продуктов и их превращений остается задачей будущих исследований. Страссмен и Вайнхауз [407] рассчитали теоретическое распределение углеродных атомов метильной и карбоксильной групп уксусной кислоты в молекуле синтезируемого изолейцина, исходя из допущения, что источником а-кето-масляной кислоты является аспарагиновая кислота, которая в свою очередь образуется из щавелевоуксусной кислоты через цикл лимонной кислоты. Наблюдаемое распределение метки в выделенном изолейцине хорошо согласуется с рассчитанными величинами. Предусматриваемые приведенными выше схемами перемещения метильной и этильной групп представляют собой [c.356]

    Первую стадию процесса превращения пирувата в валин изучили М. Страссман, А. Томас и С. Вайнхауз [78], выделившие валин из дрожжей, выращенных на среде, которая содержала глюкозу и следовые количества меченого лактата. Распределение двух других углеродных атомов показало, что цепочка из трех углеродных атомов не могла оставаться интактной в ходе этого процесса. Было высказано предположение, что происходила конденсация пирувата с ацет-альдегидом (который возникает при декарбокси-лировании пирувата) с образованием ацетолактата. Далее происходит, по-видимому, миграция метильной группы. Эти изменения, показанные на фиг. 17, соответствовали распределению в этих опытах. [c.47]

    Согласно этой схеме, пировиноградная кислота конденсируется с ацетальдегидом в а-ацетомолочную кислоту, у которой в результате превращения типа пинаколиновой перегруппировки метильная группа перемещается из а-положения в р-положение. Путем перегруппировки из а-ацетомолочной кислоты может образовываться и а-кето-р-оксиизовалерьяновая кислота, которая также может служить предшественником валина  [c.355]

    Эта реакция с фенилаланином и тирозином открывает путь для превращения соединения Се-Сз в Се-Сг. Такая реакция может быть начальной стадией в биосинтезе цианогенного глюкозида дуррина из аминокислоты тирозина. В случае цианогенного глюкозида льна — линамарина — атом азота аминокислоты (валин) сохраняется при превращении ее в этот глюкозид (Бутлер и Конн [129]). [c.336]

    Наибольшие затруднения представляет синтез дипептидов, содержащих остаток орнитина, так как в данном случае необходимо предварительно защищать 8-аминогруппу этой аминокислоты. Именно поэтому целесообразно рассмотреть в виде примера метод получения а-(/-валил)-/-орнитина (276). Здесь в качестве исходного соединения был взят монохлоргидрат /-орнитина (272). Последний был превращен действием углекислой меди в соответствующую медную комплексную соль, которая была затем проацилирована в присутствии едкого натра хлорангидридом монобензилового эфира угольной кислоты (см. такжеПосле разложения полученной медной комплексной соли 8-карбобензокси-/-орнитина сероводородом был выделен 6-карбобензокси-/-орнитин (486), этерификация которого абсолютным метиловым спиртом в присутствии хлористого водорода привела к образованию хлоргидрата его метилового эфира (488). С другой стороны, /-валин (27 ) был превращен в карбобензокси-/-валин (485) и далее в соответствующий хлорангидрид (487), который и был сконденсирован с полученным ранее метиловым эфиром (488). В результате этой реакции был выделен метиловый эфир а-(карбо-бензокси-/-валил)-8-карбобензокси-/-орнитина (489), омыленный затем раствором едкого натра до а-(карбобензокси-/-валил)-8-карбобензокси-/-орнитина (490). Его каталитическое гидрирование в присутствии палладия и привело в конечном итоге к образованию -(/-валил)-/-орнитина (276). [c.360]

    В 1970 г. [103] методом ГЖХ после превращения в нитрилы были разделены следующие изоаминокислоты валин, норвалин, лейцин, норлейцин, изолейцин. Хроматографирование проводили в изотермическом режиме и при программировании температуры на силиконах ХЕ-1150 или FFAP на хромосорбе W, а также на силиконе FFAP на порапаке-R (табл. 11). [c.61]


Смотреть страницы где упоминается термин Превращения валина: [c.361]    [c.341]    [c.406]    [c.338]    [c.339]    [c.379]    [c.406]    [c.403]    [c.404]    [c.287]    [c.287]    [c.177]    [c.43]    [c.239]    [c.246]    [c.354]    [c.355]    [c.357]    [c.442]    [c.261]    [c.216]   
Биохимия Издание 2 (1962) -- [ c.369 , c.370 ]




ПОИСК





Смотрите так же термины и статьи:

Валин



© 2025 chem21.info Реклама на сайте