Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергетика и направление химических реакций

    ЭНЕРГЕТИКА И НАПРАВЛЕНИЕ ХИМИЧЕСКИХ РЕАКЦИЙ [c.19]

    Глава 5. ЭНЕРГЕТИКА И НАПРАВЛЕНИЕ ТЕЧЕНИЯ ХИМИЧЕСКИХ РЕАКЦИЙ 1. Термохимические расчеты [c.43]

    Энергетика и направленность химических реакций [c.134]

    ЭНЕРГЕТИКА И НАПРАВЛЕНИЕ ХИМИЧЕСКИХ РЕАКЦИИ [c.50]

    Однако этот скептицизм несостоятелен. Кроме энергии есть другая величина, имеющая для химии фундаментальное значение— механический угловой момент количества движения (спин) электронов и ядер реагирующих частиц. Энергия и спин — две фундаментальные физические характеристики, которые управляют химической реакцией разрешают или запрещают ее. Любая частица, обладающая спином, имеет магнитный момент, величина и направление которого однозначно связаны с величиной и направлением спина. Электроны и ядра, обладающие спином, имеют также магнитный момент и становятся элементарными магнитиками, поведение некоторых чувствительно к магнитным взаимодействиям. И хотя их вклад в энергетику пренебрежимо мал, они управляют спином электронов и ядер и потому оказывают сильное влияние на химические реакции. [c.7]


    В химической статике и кинетике решаются вопросы о направлении химической реакции, выходе полезного продукта, ради которого проводится реакция, и о скорости реакции. Энергетика, выход и темп химической реакции являются решающими в химической технологии. [c.4]

    В общетеоретическую часть включены вопросы строения вещества, энергетики и кинетики химических реакций, растворов, окислительно-восстановительных и электрохимических процессов, а также обзор свойств элементов и их соединений. Рассмотрено строение вещества на атомном, молекулярном и надмолекулярном уровне, а также строение кристаллов. Изложены общие закономерности протекания химических реакций, в том числе основы химической термодинамики и химической кинетики. Большое внимание уделено тепловым эффектам и направленности химических реакций, химическому, фазовому и адсорбционному равновесию. Изложены кинетика гомогенных и гетерогенных реакций, цепных и фотохимических реакций и основы катализа. Освещены дисперсные системы, коллоидные и истинные растворы, большое внимание уделено растворам электролитов. Рассмотрены термодинамика и кинетика окислительно-восстановительных и электрохимических процессов, коррозия и защита металлов. Выполнен обзор свойств химических элементов и их простых соединений, рассмотрены строение и свойства комплексных и органических соединений. [c.3]

    Энергетика химических превращений. Внутренняя энергия. Энтальпия. Энтальпия образования. Закон Гесса. Термохимические расчеты. Направление химических реакций. Энергетический и энтропийный факторы. Энергия Гиббса, Энергия Гиббса образования. Химическое равновесие. Характеристика глубины протекания процесса. Константа химического равновесия. Смещение химического равновесия. Химическая кинетика. Энергия активации. Активированный комплекс. Механизм химических реакций. Катализ. Управление глубииой и скоростью химического процесса. [c.112]

    В период развития атомной промышленности и энергетики родились как самостоятельные направления науки радиационная медицина, радиационная биология, радио изотопное приборостроение для целей автоматизации технологических процессов и, наконец, радиационная хи.мия как отрасль физической химии, изучающая реакции, протекающие под воздействием ионизирующих излучений (радиационно-химические реакции). [c.3]


    Прогнозирование скорости и направления химических реакций методом линейных корреляций в настоящее время широко применяется в синтетической органической химии [1, 2]. Являясь по сути полуэмпирическим методом, он, однако, базируется на ряде теоретически обоснованных положений. Основой применяемых в настоящее время вариантов метода линейных корреляций является принцип линейных соотношений свободных энергий (ЛССЭ), о котором уже упоминалось в предыдущей главе. В общем виде принцип ЛССЭ подразумевает сзтцествование линейных корреляций между термодинамическими величинами, характеризующими равновесие системы такими, как свободная энергия, энтальпия, энтропия, и параметрами, определяющими скорость реакции (энергия активации, предэкспоненциальный множитель). Поскольку, однако, в химических взаимодействиях термодинамические величины в конечном счете определяются энергетикой и вероятностями перехода электронов, то в современном представлении принцип ЛССЭ подразумевает существование линейных корреляций кинетических констант как с чисто термодинамическими параметрами рекции, так и с квантовохимическими характеристиками участников реакции. В основе реакций, протекающих на поверхности гетерогенных катализаторов, лежат общехимические закономерности отсюда следует, что принципы, вполне обоснованные для гомогенных жидкофазных реакций, должны быть также справедливы для гетерогенных каталитических систем даже при высоких температурах. [c.85]

    Хотя термодинамика, или энергетика, как ее иногда называют, является мощным орудием исследования, она не всемогуща. С ее помощью можно предсказать максимальную работу, которую можно получить в определенном процессе, определить состояние равновесия, максимально возможные выходы, оптимальную температуру и давление для данной реакции, выбрать наиболее подходящий растворитель и т. д. Термодинамика может ответить на вопрос о том, будет ли данная химическая реакция протекать преимущественно в желаемом направлении, но она ничего не может сказать о том, какое время требуется для этого или каков путь (механизм), по которому пойдет такая реакция. Известно, что целлюлоза деревянного стола при температуре возгорания будет самопроизвольно реагировать с кислородом воздуха, давая двуокись углерода, воду и тепло, причем это направление реакции является предпочтительным. Мы можем даже вычислить, сколько выделится при этом тепла. Однако термодинамика ничего не может сказать нам о величине и свойствах энергетического теплового барьера, который должен быть преодолен, прежде чем реакция начнет протекать самопроизвольно. Скорости и механизмы реакций рассматриваются в разделе физической химии, называемом кинетикой, которая будет обсуждаться в гл. 6. Термодинамика изучает в основном конечные, т. е. равновесные, состояния, тогда как кинетика — промежуточные. [c.59]

    Химическая термодинамика. Энергетика химических реакций изучается в рамках раздела химии, который называется химической термодинамикой. Вместе с учением о строении вещества и химической кинетикой химическая термодинамика образует теоретическую основу всей современной химии. Она позволяет определять направление и полноту протекания самопроизвольных химических реакций, а также затраты энергии, необходимые для осуществления тех реакций, которые самопроизвольно идти не могут. [c.40]

    Центральным в химии является учение о превращениях веществ, в том числе об энергетике и кинетике химических реакций. Усвоение этого учения позволит предсказывать возможность и направление химических и физико-химических процессов, рассчитывать энергетические эффекты и энергозатраты, скорость получения и выход продуктов реакции, воздействовать на скорость химических процессов, а также предупреждать нежелательные реакции в тех или иных устройствах, установках и приборах. Учению об энергетике, равновесии и скорости химических процессов посвящены три главы раздела. [c.116]

    Рассматривая синтезы серной кислоты и аммиака, мы убедились в возможности термодинамического предвидения выгодного направления ведения технологического процесса. Но одной термодинамики недостаточно для суждения об осуществимости реакции в данных, оптимальных с точки зрения энергетики условиях. Кинетика и катализ—вот два необходимых дополнения для построения полной теории химической реакции. [c.229]

    Для понимания процессов преобразования энергии в биологических системах необходимо рассмотреть некоторые основные понятия термодинамики. В то время как превращения молекул происходят в соответствии с химическими законами, сама возможность осуществления этих превращений и полнота их протекания зависят от количества энергии, получаемой системой. Для изучения энергетики процессов привлекают термодинамику, главные положения которой выражены в первом и втором законах. Законы термодинамики позволяют предсказать направление химических процессов, т. е. понять, будет ли реакция проходить слева направо или справа налево (в соответствии с тем, как она записана), а также выяснить, можно ли использовать данную реакцию для совершения полезной работы или же для осуществления реакции требуется энергня, которая должна поставляться каким-то внешним источником. Основные начала термодинамики формулируются с помощью [c.323]


    Показатель концентрации водородных ионов в промышленных сточных водах является одной из важнейших качественных характеристик процесса их очистки. Величина pH обеспечивает наиболее достоверную информацию о степени загрязненности кислотами и щелочами (или о степени очистки от них) воды, сбрасываемой в канализацию или возвращаемой в производство. Скорость и направление реакций, протекающих при обработке промышленных стоков химическими реагентами, во многих случаях зависят от величины pH. Поддерживая концентрацию водородных ионов в очищаемых стоках на определенном уровне, можно создать оптимальные условия для выделения из воды многих неорганических веществ. Благодаря современной аппаратуре для непрерывного измерения величины pH в растворах и пульпах именно по этому параметру стало весьма удобно вести регулирование различных процессов в химической технологии, энергетике и в процессах очистки промышленных сточных вод. [c.21]

    С одной стороны, совершенствовались квантовохимические расчеты энергетики молекул и их превращений, изучались механизмы элементарных реакций, разрабатывались методы исследования сложных реакций. В этом направлении объект исследования обусловливает модификацию применяемого метода. Здесь лежал переход физического в химическое в химической кинетике. [c.162]

    При решении практических вопросов оптимизации технологических процессов наряду с физико-химическими исследованиями кинетики, механизма и энергетики протекания реакций часто используют и термодинамический метод анализа, позволяющий теоретически предусмотреть вероятность, направленность, предпочтительность и граничные условия их протекания. Проведение термодинамического анализа возможно лишь при достаточном количестве надежных исходных данных, получение которых требует трудоемких, дорогостоящих и не всегда осуществимых экспериментов. [c.15]

    Из этого обзора очевидно, что научно-исследовательская деятельность многих русских ученых ознаменовалась крупными открытиями. Среди них были теория химического строения А. М. Бутлерова и периодический закон Д. И. Менделеева, оказавшие большое влияние на развитие мировой науки. Университетский период развития химии в России, как и в других странах Европы, оказался плодотворным. Наибольший интерес для русских химиков представляла органическая химия. Ученые России исследовали различные классы органических соединений, разработали важные методы их синтеза, открыли ряд закономерностей и правил, фиксирующих направление и течение реакций, получивших большое значение в дальнейшем развитии науки. Вместе с тем большинство русских химиков этого периода, вопреки процагандировавщейся тогда доктрине чистой науки , приняли нецосредственно участие в разработке важных для развития экономики страны научно-технических проблем. В особенности большое значение получили исследования, связанные с добычей и переработкой нефти, использованием нефтепродуктов, а также в области металлургии, энергетики и других отраслей промышленности и сельского хозяйства. [c.204]

    Вспомним, что именно антиэнтропия (негэнтропия), выраженная в битах, и есть информация. С этой точки зрения макромолекула является идеальным носителем информации, так как число вариантов построения молекулярной химической структуры практически бесконечно топологическая и надмолекулярная организации полимера также могут изменяться в очень широких пределах. Исходя из способности макромолекул к различным реакциям (химическим, электро- и фотохимическим, радио- и механохимическим и др.), в результате которых происходит обмен информацией и энергией с окружающей средой, в последние годы был развит целый ряд совершенно нетривиальных направлений использования полимеров. Их стали широко применять для решения задач химической технологии, энергетики (различные виды аккумуляторов и преобразователей энергии), биологии и медицины, экологии и т. д. Эти исследования сегодня, по существу, делают лишь [c.5]


Смотреть страницы где упоминается термин Энергетика и направление химических реакций: [c.253]    [c.297]   
Смотреть главы в:

Задачи по неорганической химии -> Энергетика и направление химических реакций

Неорганическая химия в вопросах -> Энергетика и направление химических реакций

Справочник Химия изд.2 -> Энергетика и направление химических реакций




ПОИСК





Смотрите так же термины и статьи:

Направление химических реакци

Реакции направление

Химическая направленность

Химические направление

Химические реакции направление

Энергетика и направление реакций



© 2025 chem21.info Реклама на сайте