Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Статика химическая

    КИНЕТИКА И СТАТИКА ХИМИЧЕСКИХ РЕАКЦИИ 1. СКОРОСТЬ ХИМИЧЕСКИХ РЕАКЦИЙ [c.193]

    Том III. Статика. Химические реакции в разбавленных растворах. [c.99]

    Безденежных A.A. Расчет статики адиабатического реактора с неподвижным гранулированным катализатором на цифровых вычислительных машинах.— В сб. ОКБА Автоматизация химических производств . Вып. 2. М., НИИТЭХИМ, 1964. [c.166]


    Далеко не полный перечень упомянутых неоднородностей вносит значительные осложнения в однозначное истолкование механизмов адсорбционных и каталитических процессов. Обычно эти осложнения учитываются введением функций распределения участков поверхности по соответствуюш пм характеристикам (теп-лотам адсорбции, тепловым эффектам химических поверхностных реакций, энергиям активации хемосорбции и катализа). Иногда эффекты, воспринимаемые как следствие неоднородностей в кинетике и статике адсорбции и в кинетике каталитических реакций, объясняются как результат некоторого отталкивательного взаимодействия между адсорбированными молекулами [141. Однако до сих пор не выяснен вопрос о реальности и природе постулируемых сил отталкивания. Возникает проблема идентификации природы неоднородностей, разработки приемов их распознавания, позволяющих отличать географические неоднородности от влияния сил отталкивательного взаимодействия. [c.12]

    Во второй и третьей частях, посвященных реакционной способности веществ, главное внимание уделено их химическому сродству. Разумеется, вопросы кинетики не менее (а зачастую даже более) важны, чем вопросы статики процессов. Однако, если принять во внимание специфичность и большое разнообразие скоростных факторов и также огромную сложность учета их влияния на реакционную способность веществ, изменение представлений о механизме протекания процессов по мере углубления знаний и, наконец, то обстоятельство, что большинство подлежащих рассмотрению вопросов связано со статикой различных процессов, то этот выбор вряд ли можно счесть спорным. Действительно, и закон действующих масс, и принцип Ле Шателье, и многие свойства растворов (в их числе растворимость, температуры отвердевания и кипения, давление пара), и процессы в них (диссоциация, нейтрализация, сольватация, комплексообразование, гидролиз и т.д.)—это прежде всего проблемы равновесия. Вместе с тем надо отчетливо показать, что вопросы статики и кинетики это проблемы возможности и действительности и что значение энергетического (термодинамического) и кинетического факторов неодинаково для различных типов процессов для реакций в растворах электролитов (например, при нейтрализации), для высокотемпературных реакций и других быстрых процессов кинетические соотношения не существенны наоборот, для медленных реакций и таких, продукты которых гораздо устойчивее исходных веществ (например, при горении), не играют ощутимой роли равновесные соотношения. [c.4]


    Чувствительность ХТС — это свойство системы изменять характеристики ее функционирования под влиянием изменений собственных параметров системы (параметров элементов и параметров технологического режима) и внешних Возмущающих воздействий. Создание ХТС, малочувствительных или нечувствительных к изменению параметров и внешних возмущающих воздействий, весьма важно для повышения качества процессов функционирования химических производств. Для ХТС существенна нечувствительность как в статике, так и в динамике. [c.32]

    Для эффективного исследования возможностей совмещенного процесса ректификации и химической реакции, очевидно, необходимо располагать математической моделью, позволяющей воспроизводить его особенности, причем не только в статике, но и в динамике. Последнее обусловлено тем, что необходимо иметь полную информацию о стратегии пуска и останова производства, т. е. иметь динамические характеристики объекта. Исходя из [c.365]

    Впервые представление о химическом процессе как о двух реакциях, идущих одновременно в противоположных направлениях, выдвинул еще в 1803 г. Бертолле в своей книге Опыт химической статики . [c.8]

    Это — основная зависимость химической статики. [c.671]

    Предлагаемая книга представляет собой обработанный автором лекционный курс, который читался студентам химического факультета в Ростовском государственном университете. Курс содержит как бы два раздела в первом излагаются основы химической статики, второй описывает приложение структурных представлений к решению динамических задач органической химии. [c.5]

    Собственно, о поражении Бертолле можно говорить весьма условно. Дискуссия между Прустом и Бертолле протекала без окончательной победы с обеих сторон, без радикальных изменений в их допущениях. Более того, практически все без исключения положения, высказанные Бертолле по вопросам о непрерывности изменения сил химического сцепления , т. е. энергии химической связи, и изменения состава соединений, о роли действия масс, об обратимости реакций и важности изучения химической статики (равновесных систем) оказались четко выраженной исследовательской программой. Она включала все работы по химии жидких растворов и химии твердого тела, но как раз эти разделы химии оказались областями, чуждыми классического атомно-молекулярного учения и лишь искусственно, в силу неправомерной абсолютизации идей дискретности, втиснутыми в прокрустово ложе этого учения. В русле этой программы, как будет показано в гл. П1, находились и труды А. М, Бутлерова в области структурной органической химии. [c.65]

    Все эти факты свидетельствуют о том, что наступает пора коренным образом пересмотреть те чересчур резкие барьеры, которые мы сами возвели для отграничения соединений от процессов. Конечно. пред.меты и процессы, так же как статика и динамика, — это противоположности. Но противоположности немыслимы без единства. Химия же давно показала, что в реальных условиях все химические соединения так нли иначе подвергаются изменениям, оставаясь пр.и зтом вне реакции лишь условно. [c.96]

    Структура пособия определена логикой взаимосвязей между важнейшими понятия.ми и системами понятий химической науки. Поэтому вначале рассматривается химическая статика — взаимосвязь свойств с составом и строением веществ, а затем элементы химической динамики — учение о химическом равновесии и скоростях химических реакций. На этой основе описываются такие важные темы, как растворы и окислительно-восстановительные процессы. [c.3]

    Во-вторых, учение о периодичности привело в соответствие всю систему понятий химической статики. В этом состоит объяснительная роль новой теории (объяснение различий в составе оксидов и гидридов, оксидов и хлоридов, оксидов и пероксидов и т. д.). [c.49]

    В общей химии выделяют два раздела химическую статику и химическую динамику. Химическая статика включает первые три системы и учение о химическом равновесии. Центральными в химической статике являются понятия химический элемент (абстрактное понятие) и атом (конкретное понятие). Основные химические формы организации вещества — атом, молекула и кристалл. Они образуют систему представлений о химическом соединении, которую можно схематически представить так  [c.7]

    Единая общепринятая теория концентрированных растворов пока отсутствует, что затрудняет рассмотрение с физико-химической и технологической точек зрения всех аспектов статики и кинетики превращений веществ в процессах химико-технологической переработки. Накопленный физико-химический материал по теоретическому обоснованию свойств, структуры, термодинамической оценке параметров компонентов раствора при учете влияния концентрации, химических взаимодействий, температуры и давления позволяет в отдельных случаях достаточно полно оценить статическое состояние, т. е. состояние системы при равновесии. Это имеет большое значение для процессов растворения, кристаллизации, поглощения и выделения газообразных реагентов в многокомпонентных системах, обрабатываемых при получении неорганических веществ. В этой главе рассмотрены некоторые свойства растворов электролитов, важные для технологии. [c.73]


    Динамика ионного обмена описывается системой уравнений статики, кинетики и материального баланса. Однако кинетические модели ионного обмена различны. Процесс может контролироваться внешней или внутренней диффузией, или химической реакцией между ионитом и компонентом раствора. Иногда он зависит от других факторов, например от изменения объема ионита, от диффузионного электрического потенциала, который может возникать, если ионы имеют разные заряды и разные подвижности, и проч. В связи с этим предложено множество кинетических уравнений для разных вариантов механизма процесса. Априорный выбор той или иной кинетической модели, а следовательно, и кинетического уравнения для конкретного ионообменного процесса обычно затруднителен — требуется предварительное экспериментальное исследование. Чаще всего закономерности кинетики ионного обмена в основном тождественны таковым для диффузионных адсорбционных процессов, где массопередача в значительной мере зависит от гидродинамических условий. Вопросы кинетики ионного обмена рассмотрены в монографиях [52, 83а, 107, 145, 180, 181]. [c.309]

    Мейер Л. Новейшие теории химии и их значение для химической статики. СПб., 1800, с. 0. [c.277]

    Химическая кинетика, изучающая реакции в их движении, может быть противопоставлена термодинамике, которая ограничивается лишь рассмотрением статики химических реакций — равновесий. Термодинамика в принципе при наличии некоторых исходных данных может предсказывать эти равновесные состояния. Однако между величиной изменения свободной энергии при реакции и ее скоростью не существует прямой связи. Так, реакция образовання воды из На и Оа идет с меньшей скоростью, чем реакция между ионами Н" и ОН , хотя первая сопровождается значительно большей убылью свободной энергии. Таким образом, вопросы о том, в течение какого времени и каким путем совершаются те или иные процессы, находятся вне рамок термодинамики и время не входит в термодинамические уравнения. [c.318]

    Вулканизация является единственным из химических превращений каучука, которое изучалось со стороны кинетики (Бызов, Нордлендер, Блэйк и др.). Другие химические превращения не подвергались исследованию Е этом отношении. Между тем кине-т ика, как и статика химических превращений каучука имеют ряд весьма важных особенностей, связанных с его молекулярной структурой и коллоидным сс стоянием, и несомненно могут служить объектом очень интересных научных изысканий. [c.18]

    Процесс вулканизации еще сравнительно недавно был единственным химическим превращением каучука, осуществляемым в производственном масштабе. В настоящее время к подобны.м технологически интересным изменениям этого продукта относится также и взаимодействие каучука с некоторыми солями и органическими сульфо- и хлоророизводными (получение плиоформа, термопрена и т. п). Несомненно, что в будущем круг таких превращений расширится, в особенности в применении к синтетическим каучужам. Эти новые продукты вызовут к жизни и новые, технически ценные производные. Таким образом, изучение химических превращений каучука ни в какой мере не следует рассматривать как пройденную страницу учения о каучуке. Более того, перед исследователем каучука стоит почти не затронутая и практически очень важная задача изучения динамики и статики химических превращений каучука, поскольку в этом отношении особенности структуры и состояния каучука ставят это вещество в исключительное положение. [c.149]

    Химическая кинетика, изучающая реакцйи в их двшсении, может быть противопоставлена термодинамике, которая ограничивается лишь рассмотрением статики химических реакций — равновесий. Термодинамика в принципе при наличии некоторых исходных данных может предсказывать эти равновесные состояния. Однако вопросы о том в течение какого времени и каким путем совери1аются те или иные процессы, находятся вне рамок термбдинамики и время не входит в термодинамические уравнения. [c.314]

    Высшую и последнюю цель всех химических исследований должно составлять развитие химической статики и динамики, учение о равновесии химических сил н дои-жепии материи, [c.3]

    В книге рассматриваются теоретические проблемы процессов химической технологпи с широким использованием математических методов (теория групп, векторный и тензорный анализ, математическая статистика и теория вероятностей), что позволило авторам сделать глубокие обобщения, дать новые системы уравнений статики и кинетики процессов. [c.4]

    Предварительный анализ химической концепции нового метода — это первый этап оформления технологического процесса. Если такой анализ не выявляет никаких принципиальных недостатков концепции, предпринимаются исследования в лабораторном и чет-вертьпромышленном масштабе. Цель их — исследование химических процессов, т. е. статики, кинетики и механизма процесса, определение достигаемых выходов, приблизительное установление оптимальных условий проведения основной реакции, испытание наносимых на оборудование покрытий и т. д. [c.343]

    Веряскина М. В., Масленников И. М., Математическая модель статики процессов жидкофазЬого окисления углеводородов в реакторе полного смешения, в сб. Всесоюзная конференция по химическим реакторам , т. 2, Новосибирск, 1965, стр. 237. [c.577]

    Во второй и третьей частях главное внимание уделено химическому сродству. Разумеется, вопросы кинетики не менее (а зачастую даже более) важны, чем вопросы статики процессов. Однако если принять во внимание специфику и большое разнообразие кинетических факторов, а также огромную сложность учета их влияния на реакционную способность веществ, изменение представлений о механизме протекания процессов по мере углубления наших знаний и, наконец, то обстоятельство, что бол1 шинство подлежащих рассмотрению вопросов связано со статикой различных процессов, то этот выбор вряд ли можно счесть спорным. Действительно, и закон действующих масс, и принцип Ле Ша-телье, и многие свойства растворов (в их числе растворимость, температуры отвердевания и кипения, давление пара), и процессы в них (диссоциация, нейтрализация, сольватация, комплексообразование, гидролиз и т. д.) — это прежде всего проблемы равновесия. Вместе с тем надо отчетливо показать, что вопросы статики и кинетики — это проблемы возможности и действительности и что значение энергетиче- [c.4]

    Первые теории химического процесса. Первые теории, описывающие. химический процесс, появились одновременно с первыми структурными представлениями на граяи ХУНТ и XIX вв. Спор между Бертолле и Прустом явился результатом борьбы за сущест-воваиие этих двух направлений, противопоставленных друг другу. Структурные теории тогда пустили глубокие корни и послужили началом стройного атомно-молекулярного учения. Ростки же кинетических теории, как было сказано в гл. II, увяли, так как появились преждевременно. И тем ие менее почвой для их произрастания, правда более чем полувеком спустя, явились открытия, подтвердившие химическую статику Бертолле, т. е. его идеи об обратимости реакций и о влиянии на ход реакций действующих масс. В 1861 г. Д. И. Менделеев под влиянием результатов изучения реакций омыления сложных эфиров одним из первых осмелился ввести понятие об обратимости реа кций в свой учебник Органическая химия [5]. При этом он заметил, что при суждении о химических процессах никогда не должно забывать закона масс, указанного Бертоллетом [5, с. 285]. [c.111]

    Настоящее же широкое признание химической статики пришло в результате открытия зз Кона действующих масс и создания количественной теории хим ических равновесий К. М. Гульдбергом и П. Вааге (1864—1867), которые сумели использовать для этих це-,тей тогдашние успехи атомно-молекулярного учения. Взяв за основу открытие Бертолле, — пишет Я. Г. Вант-Гофф по поводу работ Гульдберга и Вааге, — а именно, что количество вещества (масса) влияет на конечное состояние равновесия, они ввели в науку точные понятия относительно величины этого количества вещества  [c.111]

    Нельзя 1не считаться и с тем, что химическая статика, благодаря своей относительной близости к укоренившимся идеям механицизма, легче, чем другие области уче ния о химическом процессе, могла пробить себе путь к признанию. Лопытки сведения физических и химических процессов к механическим превращениям атомных групп и молекул были в середине XIX в. весьма распространенным способом интерпретации сложных природных явлений. В химии, как и в механике, — писали Гульдберг Вааге, — наиболее естественным методом исследования является определение сил в состоянии их равновесия. Это значит, что ладо изучать те химические реакции, при которых силы, производящие но вые соединения, уравновешиваются силами разрушения этих соединений. [c.112]

    Здесь нет необходимости рассматривать истоки химической кинетики до работ Я. Г. Вант-Гоффа они освещены во многих историко-химических очерках [9, 10]. С работ Я. Г. Вант-Гоффа начинается за1кладка фундамента химической кинетики и как прямого продолжения и вместе с тем как отрицания химической статики. Исходя из того, что динамизм химических систем, в том числе и явления равновесия между прямой и обратной реакциями, не может быть объяснен лишь одним механическим перемещением каких бы то ни было частиц, Вант-Гофф пришел к выводу о важной роли а химическом (превращении лабильности сродства. Поэтому он не принял в качестве теоретической основы изучения химического процесса лишь один закон действующих масс. Рассматривая количественную оценку раВ(НОвесия наряду со скоростями реакций как важные параметры химических процессов, главное внимание он обратил на те стороны химического взаимодействия, которые позволя- [c.113]

    Теория ионообменной хроматографии сложна вследст вие многообразия химических и физических явлений, характерных для обменного поглощения ионов на ионообменных сорбентах. В соответствии с природой этих явлений она слагается из статики (равновесия), кинетики и динамики ионообменных процессов. Ниже рассматриваются элементы теории ионообменно-хроматографического метода [c.172]

    Б своих книгах Изучение законов химического сродства (1801) и Опыт химической статики (1803) К. Бертолле изложил новое ученое о сродстве. Придавая большое значение решению этой проблемы, он писал Лишь с того времени, как ввели понятие сродства в качестве причины всех соединений, стало возможным рассматривать химию как науку, имеющую общие принципы. С тех иор пытались подчинить точному закону последовательность соедипени11, которые могут образоваться различными элементами, и определить пропорции, входящие в эти соединения .  [c.110]

    Следующее высказывание, взятое из книги Опыт химической статики , с полной ясностью характеризует представления К. Бертолле о химическом сродстве Все силы, порождающие химиче-скпе явления, производятся взаимным притяжением молекул вещества притяжение это названо сродством, чтобы отличить его от притяжения астрономического. Вероятно, что та и другая сила одного и того же свойства, но астрономическое притяжение проявляется только между массами, находящимися на таком расстоянии, где конфигурация частиц, их промежутки и их своеобразное изаимоде11стиие не имеют никакого влияния — действие этого притяжения, всегда пропорциональное массам и обратно пропорциональное квадрату расстояния, может быть точно вычислено действия же химического притяжения или сродства, наоборот, своеобразными и часто неонределенными условиями настолько изменяются, что пх невозможно вывести из одного общего принципа и их можно лишь последовательно констатировать. И лишь наблюдение должно определить химические свойства или сродство веществ, путем которых последние взаимодействуют при определенных обстоятельствах. Между тем весьма вероятно, что сродство по своему происхождению не отличается от общего притяжения и должно также подчиняться законам, которые механика выводит для явлений, зависящих от действия масс и естественно полагать. [c.110]

    В. 50-е годы XIX в. наметилось более тесное сближение между физикой и химией. Этому способствовали атомистические представления, в частности кинетическая теория газов, оказавшая в дальнейшем огромное влияние на развитие физической химни. В химии же после классических работ А. Сент-Клер Девиля по термической диссоциации соединений изучение процессов и способов их осуществления выдвинулось на первый план. Развитие этого направления исследований привело к созданию химической статики и проникновению в химию первого, а затем второго закона термодинамики. Рассмотрение равновесных состояний как определенного аспекта химического процесса было той основой, на которой началось сближение между физикой и химией, прогрессивно углубляющееся с годами. [c.300]

    Теорию динамического химического равновесия развивал Д. И. Менделеев. Он отрицал статику но отношению к внутреннему состоянию вещества, считая, что атомы в молекулах находятся в состоянхга непрерывного движения Видя запас живой силы, проявляющийся в атомах и частицах при акте их взаимодействия и выражающийся в физических и механических проявлениях, их сопровождающих, химики должны признать в самих частицах атомы в движен1ш, снабженными живою силою, которая не творится и не пропадает, как сама материя. Следовательно, в химии должно признавать и искать подвижные равновесия не только между частицами, но и внутри них, между атомами . Д. И. Менделеев обращал внимание на обратимость химических реакций и превращений. Если мы знакомимся с химическими отношениями, то п копце концов убеждаемся в том, что химические реакции или отношения суть обратимые Он стремился выявить и изучить условия подвижных равновесий как между молекулами, так и между атомами. Атомы в частице, — писал Д. И. Менделеев, — должно представить находящимися в некотором подвижном равновесии и действующими друг на друга Эти представления он распространил в 70—80-х годах на обширную область растворов. В курсе лек- [c.330]


Смотреть страницы где упоминается термин Статика химическая: [c.416]    [c.199]    [c.94]    [c.166]    [c.12]    [c.277]   
История химии (1975) -- [ c.149 ]

Очерк общей истории химии (1969) -- [ c.427 ]

История химии (1966) -- [ c.148 ]




ПОИСК







© 2025 chem21.info Реклама на сайте