Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спираль клубок переход

    Переходы спираль -- клубок происходят в растворах белков при нафевании, при изменении pH и концентрации солей. [c.346]

    Четкие различия в химических и физико-химических свойствах фиброина и серицина отсутствуют. Фиброин имеет М = (2,5+3,8) 10 , а серицин - 1,6 10 + 3,1 10 Макромолекулы фиброина и серицина характеризуются конформационной неоднородностью полимерная цепь может последовательно включать а-спиральные и -структурные участки, причем их соотношение определяется наличием воды. В условиях высокой подвижности макромолекул (в растворе, в набухшем состоянии) возможны обратимые конформационные переходы а-спираль клубок -структура. а-Спираль построена из повторяющихся аминокислотных звеньев, отличающихся боковыми заместителями. Линейное расстояние вдоль оси спирали между двумя однородными атомами (шаг спирали) составляет 1,5 А. Угол между перпендикуляром к оси спирали и плоскостью, занимаемой аминокислотными звеньями, равен 26°. Один виток спирали включает 3,6 аминокислотных остатка. Это соответствует линейному расстоянию вдоль оси спирали, равному 5,4 А.  [c.375]


    В зависимости от знака поправки эффективный коэффициент гибкости может стать больше или меньше /о, т. е. в некоторых условиях гибкоцепной полимер может превратиться в жесткоцепной и наоборот со всеми последствиями, касающимися дальнейшего упорядочения. Наиболее типичный тому пример — переходы типа спираль клубок в синтетических а, -полипептидах [9, с. 290]. [c.40]

    Поэтому зависимость Гпл от прилагаемого напряжения имеет вид, изображенный на рис. VI. 24, а. Зависимость эта имеет немонотонный характер, если макромолекулы претерпевают конформационный переход типа спираль — клубок, в результате которого их гибкость увеличивается (рис. VI. 24, б). Напротив, в силу причин, которые должны быть читателю очевидны, при растяжении ориентированного полимера в направлении, перпендикулярном оси ориентации, 7пл убывает с напряжением, как это показано на рис. VI. 24, в. [c.225]

    На рис. 2.12 приведена кривая теплопоглощения в зависимости от температуры для перехода спираль — клубок ДНК из зобной железы теленка в 0,15 М фосфатном буфере (рН= = 10,6), концентрация ДНК 8-10 М. [c.55]

    Одно из наиболее существенных отличий процесса свертывания белковой цепи от перехода спираль-клубок синтетического полимера связано с дальними взаимодействиями, обусловливающими в значительной мере глобулярную форму нативной конформации белков. Свободная энергия глобулы по отношению к энергии полностью развернутого состояния, согласно Гё [61], может быть выражена суммой двух членов, пропорциональных объему и площади поверхности глобулы. При одном и том же объеме энергия системы будет минимальной при реализации пространственного строения белка в форме одной глобулы. Данное соображение послужило основанием для создания Гё однодоменной глобулярной модели свертывания белковой цепи, согласно которой аминокислотная последовательность на любой стадии ее структурирования состоит из двух частей - [c.492]

    Остатки с низкими относительными статистическими весами значительно укорачивают среднюю длину спирали. Чтобы оценить спиральный потенциал данного белка, было использовано одно значение параметра инициации а = 5 10 (разд. А.4). Кроме того, были введены три различные значения х для всех типов остатков. Так, 5 -= 0,385 соответствовало остаткам, прерывающим спираль (В), 5 1, 00 — индифферентным к спирали (/) и з=1,5 — образующим спираль (Н) (табл. 6.1). Значения а и х получают по наклонам и температурным переходам зависимостей, описывающих переходы спираль — клубок в синтетических полипептидах, используя уравнения (А. 18) и (А.20). Спиральная конформация предсказывается для всех положений остатков I, для которых / , больше средней величины В результате получаются непрерывные потенциальные функции, поскольку уравнение (6.2) учитывает кооперативность модели Зимма — Брэгга, согласно которой спирали должны иметь определенную длину (рис. А. 1). Этот метод предсказания дает спиральные сегменты длиной около 10 остатков, что намного меньше длины, ожидаемой для данного значения а гомополимеров при 5= 1, т. е. Ь 1/"5 10 = 40 (уравнение (А.17)). Такое укорочение спирали является следствием включения остатков с низкими значениями 5. [c.139]


    Статистическая механика перехода спираль — клубок 295 [c.295]

    А.4 Модель Зимма — Брэгга для перехода спираль — клубок Основная формула [c.295]

    Будем считать (2/) за постоянную, которую опустим, поскольку интерес представляет только изменение Z при переходе спираль — клубок, а не ее абсолютное значение. [c.297]

    В заключение отметим, что для изучения тепловых эффектов процессов денатурации белков и нуклеиновых кислот и взаимодействия этих биополимеров с ионами металлов и гидроксония в последнее время щироко и успешно применяется микрокалори-метрия. Тепловые эффекты этих процессов довольно малы. Так, теплота денатурации (т. е. перехода спираль—клубок) ДНК составляет около 4,0 ккал на моль мономерных единиц. Поскольку исследования обычно проводятся при концентрациях биополимеров порядка 10 М (в расчете на мономерные единицы), а объемы составляют 1—2 мл, измеряемые теплоты крайне малы (де- [c.47]

    Введено 20 новых практических работ по разделам расчет термодинамических функций по экспериментальным данным, рефрактоденсиметрический анализ многокомпонентных систем, рМ-метрия, электрометрическое титрование водных и неводных растворов, переход спираль — клубок, солевой эффект и т. п. [c.3]

    Конформация цепи определяется степенью ионизации — удаленностью pH от ИЭТ. В ИЭТ раствор полиамфолита показывает минимальные вязкости, степень набухания, растворимость и заряд. Это позволяет использовать зависимость указанных свойств от pH раствора для определения ИЭТ амфолитов. Переход а-спираль— клубок можно наблюдать и по изменению оптического вращения. Удельное вращение [а] раствора складывается из двух членов, одпн из которых соответствует внутреннему вращению, зависящему от асимметричных С-атомов каждого звена, другой — конформа- [c.287]

    Спиральная структура макромолекул может сохраняться в растворителях, слабо действующих иа Н-связн даже при полной сольватации индивидуальных молекул. В сильно взаимодействующих растворителях водородные связи нарушаются и форма спирали переходит в статистический клубок. Переход спираль-клубок на- блюдают по изменению оптического вращения и вязкости растворов в зависимости от состава смеси слабого (например, хлороформа) и сильного (например, дихлоруксусной кислоты) растворителя. При увеличении концентрации дихлоруксусной кислоты правое вращение сменяется на левое. Вязкость растворов при этом резко падает. [c.288]

    Задания. 1. Измерить удельное вращение и вязкость поли-у-беи- зил-1-глутамата в смесях хлороформа и дихлоруксусной кислоты разного состава. 2. Построить кривые зависимости удельного вра-щемпя II приведенной вязкости от состава растворителя. 3. Установить концентрацию раствора при переходе спираль — клубок. [c.292]

    Построить графики зависимости [а] и г уд/с от состава растворителя. В отчете отметить а) покажут ли оба метода точку перехода спираль—клубок при одном и том же составе растворителя б) покажут ли результаты мгновенный илн постепенный переход из одной конфигурации в другую. Учесть, что в уравнении (XIX.5) значение К заг,исит от состапа растворителя и изменяется в разных ого смес5 .  [c.292]

    Биол. макромолекулы (белки, нуклеиновые к-ты) и их модели (полипептиды, полинуклеотиды) в р-рах могут иметь специфич. конформации, стабилизированные внутримол. взаимодействием. Так, нативные глобулярные конформации белков в водном р-ригеле стабилизированы водородными связями и гидрофобными взаимодействиями неполярных групп атомов. Полярные группы на пов-сти глобулы обеспечивают ее р-римость. При изменении состава и св-в р-рителя, pH и ионной силы р-ра или при изменении т-ры происходят виутримол. конформац. переходы типа спираль-клубок и глобула-клубок, что приводит к резкому изменению всех св-в Р. п. [c.190]

    К областям применения ЯМР-спектроскопии высокого разрешения для характеристики полимеров относятся изучение конфигурации полимерных цепей (форма цепей полимера, образованная основными валентными связями) исследование конформации полимерных цепей (форма цепей полимера, обусловленная вращением вокруг основных валентных связей) анализ распределения последовательностей и тактичности в полимерах и сополимерах установление разницы между полимерными смесями, блок-сополимерами, чередующимися сополимерами и статистическими сополимерами исследование переходов спираль — клубок изучение молекулярных взаимодействий в полимерных растворах, диффузии в полимерных пленках, совместимости полимеров и полимерных смесей исследование процессов сшивания изучение механизма роста цепи при винильной полимеризации. [c.339]

    Подобно белкам, нуклеиновые кислоты могут денатурировать. Этот процесс состоит в расхождении цепей двойной спирали ДНК и двухспиральных участков молекулы РНК (в частности, тРНК рис. 2-24). Денатурацию можно вызвать добавлением кислоты, щелочи, спиртов или удалением стабилизирующих структуру молекулы противоионов, например Mg +. В результате денатурации каждая из цепей молекулы приобретает форму беспорядочно свернутого клубка, поэтому данный процесс называют переходом спираль—клубок. Тепловая денатурация нуклеиновых кислот, как и белков, носит кооперативный характер (гл. 4, разд. В.7) и происходит в довольно узком интервале температур характерным параметром процесса является температура плавления. [c.142]


    Неупорядоченные белковые конформации появляются при процессах денатурации, при переходах спираль — клубок, у синтетических полиаминокислот и др. Кинетические и теоретические проблемы переходов спираль — клубок осчещены в обзорных работах [157, 158]. [c.381]

    Склонности к спирали, полученные с помощью статистической механики синтетических полипептидов, соответствуют склонностям, основанным на частотах встречаемости в глобулярных белках. В своих последующих работах Чоу и Фасман [201] сопоставили склонности к спирали, определенные но наблюдаемым частотам встречаемости в глобулярных белках, с данными, полученными на основании температур 9 переходов спираль — клубок синтетических полипептидов, согласно модели Зимма — Брэгга. Как показано в разд. А.5, по температуре перехода 9 можно определить относительные статистические веса х, а следовательно и склонности к спиралеобразованию. Чоу н Фасман показали, что величины з семи типов остатков, для которых имеются данные по синтетическим полипептидам, в пределах 10% согласуются со склонностями к спирали, полученными по частотам встречаемости в глобулярных белках. Это соответствие было более подробно исследовано Судзуки и Робсоном [352]. [c.140]

    Параметры инициации, полученные из данных по синтетическим полимерам, хорошо коррелируют с частотами встречаемости остатков на концах спирали. Чоу и Фасман [201] сравнили также параметры инициации а, полученные при рассмотрении переходов спираль — клубок (разд. А.5), с частотами встречаемости остатков на концах спиралей в глобулярных белках. Как и в работах Лифсона и Ройга [375], в данном случае было проведено усреднение по обоим [c.140]

    Свертывание кооперативно. Как и переходы спираль— клубок (см. приложение), свертывание и развертывание белковой цепи — кооперативный процесс. Конкретизируем это общее положение для BPTI. Все промежуточные формы в этом случае нестабильны положение конформационного равновесия смещается от развернутого восстановленного белка до нативного состояния с тремя связями S—S. Как видно из рис. 8.2, молекулярная заселенность существен- [c.188]

    Линейный массив с взаимодействиями между ближайшими соседями впервые описан Айзингом. Упрощения функции распределения, помимо учтенных в уравнении (А.2), основаны на предположении об отсутствии взаимодействия между различными остатками. Это совершенно неверно в случае а-спиралей, поскольку в них существуют водородные связи между остатками / и 3 (рис. 5.4). Кроме того, кривые, описывающие переходы спираль — клубок в синтетических полипептидах [328, 787], имеют сигмоидальный характер, что указывает на кооперативность. Чтобы учесть этот факт, необходимо ввести иные аппроксимации функции распределения. Для подобного случая, а именно для линейного массива ферромагнетиков с взаимодействиями между ближайшими соседями, аппроксимация предложена Айзингом [788]. [c.295]

    Член, учитывающий взаимодействие ближайших соседей, вводится в упрощенную формулу. Зимм и Брэгг [789] применили модель Айзинга к переходу спираль — клубок гомополипептидных цепей. Для этой цели они разделили конформационное пространство на две области or или а , но не or или клубок . Кроме того, они использовали приближенное уравнение (А.4), не учитывающее взаимодействия остаток — остаток, а затем ввели член, учитывающий взаимодействие между ближайшими соседями. Для цепи, состоящей из N остатков данного типа, уравнение (А.4) принимает вид  [c.295]


Смотреть страницы где упоминается термин Спираль клубок переход: [c.220]    [c.55]    [c.738]    [c.298]    [c.637]    [c.608]    [c.26]    [c.417]    [c.77]    [c.494]    [c.141]    [c.293]   
Аминокислоты Пептиды Белки (1985) -- [ c.381 ]

Энциклопедия полимеров Том 2 (1974) -- [ c.127 , c.130 ]

Энциклопедия полимеров Том 2 (1974) -- [ c.127 , c.130 ]

Катализ в химии и энзимологии (1972) -- [ c.242 ]




ПОИСК







© 2025 chem21.info Реклама на сайте