Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сродство атома к электрону. Электроотрицательность

    В рассмотренном выще примере с НС1 приведенные численные данные создают впечатление, что электроны должны смещаться от атома С1 к атому Н, поскольку первая энергия ионизации у водорода (1310 кДж моль больще, чем у хлора (1255 кДж моль ). Однако на образование химической связи влияют не только энергии ионизации соединяющихся атомов, но также и сродство к электрону каждого из них. Сродство к электрону у С1 (356 кДж моль настолько выще, чем у Н (67 кДж моль ), что предсказание, основанное только на сопоставлении энергий ионизации, оказывается прямо противоположным истинному положению. Для выяснения распределения зарядов вдоль связи между двумя атомами следует принимать во внимание одновременно энергию ионизации и сродство к электрону-другими словами, электроотрицательность каждого из двух атомов. [c.535]


    Энергия ионизации — это энергия, необходимая для отрыва электрона от невозбужденного атома (измеряется в эВ/атом или кДж/моль, в этих же единицах выражают сродство к электрону п электроотрицательность). Различают потенциалы ионизации (/) 1-го порядка, 2-го порядка и т. д., характеризующие энергию отрыва первого электрона, второго электрона и т. д. Причем /1< /2<С [c.82]

    В 1934 г. Р. Малликен предложил другую интерпретацию понятия электроотрицательности атомов. Если энергия ионизации атома велика, то его тенденция к отдаче электронов выражена слабо если же велика энергия сродства к электрону, то атом стремится присоединять электроны. Общее стремление атома к присоединению электрона определяется арифметической полусуммой величин энергии ионизации и сродства к электрону. Приближенно величины электроотрицательности по Полингу и Малликену связаны линейно  [c.175]

    Электроотрицательность элементов. Представим себе, что во взаимодействие вступают атомы А и В и что химическая связь осуществляется за счет смещения электрона от одного,атома к другому. Возникает вопрос, какой из этих атомов оттянет на свою оболочку электрон Допустим, электрон переходит от А к В, Этот процесс связан с выделением энергии (Яв —/а ), где в — сродство к электрону атома В, /д— энергия ионизации атома А. При обратном переходе будет выделяться энергия ( д—/в). Направление процесса определится максимальным выигрышем энергии, так как выделение энергии стабилизирует оиотему. Допустим, что фактический переход происходит от атома А к атому В. Это означает, что (Ев—/д)> >(Еа -/в) или (/в + Ев )> (/а + а ). Величина 1/ (/ + Е) получила название электроотрицательности. Обозначим ее через х. Следовательно, [c.133]

    Галогены отличаются самым высоким сродством к электрону, так как при присоединении одного электрона к нейтральному атому они приобретают законченную электронную конфигурацию благородного газа. Щелочные металлы характеризуются низким сродством к электрону. Для решения вопроса о том, какой из атомов легче отдает или присоединяет электрон, учитывают оба показателя ионизационный потенциал и сродство к электрону. Полусумма этих величин называется электроотрицательностью (ЭО). [c.30]

    В наружном уровне содержится три электрона, расположенных на 3s- и Зр-подуровнях (3s 3p в невозбужденном состоянии р-электрон неспаренный. Однако соединения алюминия, где он одновалентен, очень неустойчивы. Для алюминия более характерна степень окисления -(-З поскольку для возбуждения атома алюминия, т. е. для перевода одного электрона из 3s- в Зр-сос-тояние, нужно затратить небольшое количество энергии, которое полностью перекрывается энергией образования химических связей. Потенциал ионизации /1 алюминия (свободного атома) равен 5,98 В (небольшой) величины сродства к электрону (0,52 эВ) и электроотрицательность (1,5) также малы. Следовательно, алюминий, являясь активным металлом, будет в реакции проявлять только восстановительные свойства, его атом отдает [c.144]


    Энергия ионизации — это энергия, необходимая для отрыва электрона от атома элемента. Сродство к электрону — это энергия, которая выделяется при присоединении атомом одного электрона. Обе эти характеристики являются периодическими функциями порядковых номеров элементов. При соединении двух атомов электроны будут перемещаться в большей или меньшей мере от атома с малым сродством к электрону и малой энергией ионизации, т. е. легко теряющего электрон и не склонного к его присоединению, к атому с большими величинами I и . Ввиду этого нередко для характеристики способности атомов к потере и приобретению электронов используют величину электроотрицательности ЭО  [c.69]

    Отличия соединений фосфора и мышьяка от соединений азота связаны главным образом со способностью фосфинов и арсинов легко реагировать с электроотрицательными элементами, т. е. тами, обладающими большим сродством к электронам (галогены, кислород). Объясняется это тем, что свободная электронная пара фосфинов, арсинов и других соединений трехвалентных фосфора и мышьяка находится дальше от ядра, чем в азоте. Чем дальше электрон от ядра, тем меньше он притягивается ядром, тем легче может соответствующий атом отдавать свои электроны другому. [c.254]

    Основополагающим понятием современной химии является понятие о химическом элементе , т. е. виде атомов с определенной совокупностью свойств. Под свойствами изолированных атомов подразумеваются заряд ядра и атомная масса, особенности электронного строения, потенциалы ионизации, сродство к электрону и электроотрицательность, атомные, орбитальные и ионные радиусы н т. д. Однако необходимо иметь в виду, что изолированные атомы как форма организации вещества могут существовать в природе лишь при достаточно высоких температурах в виде моноатомного пара. Единственным исключением являются благородные газы, для которых при любых условиях и в любом агрегатном состоянии структурной единицей является атом. Все остальные элементы существуют в природе в виде более сложных агрегатов молекул и кристаллов. Таким образом, следует строго различать понятия элемента как вида изолированных атомов и простого вещества как формы существования элемента в свободном состоянии. Следует особо подчеркнуть нетождественность этих понятий хотя бы потому, что один элемент может существовать в виде нескольких простых веществ (аллотропия) .  [c.26]

    Рассмотрим количественную характеристику электроотрицательности. Пусть атомы А и В образуют молекулу с ионной связью. Если неизвестно, какой из них легче отдает или присоединяет электроны, то можно предположить образование молекулы А+В или В+А . В первом случае для образования иона А+ надо отнять от атома А электрон, на что необходимо затратить энергию ионизации. Обозначим ее через /д. Оторванный свободный электрон тут же присоединяется к атому В, при этом выделяется энергия, равная энергии сродства к электрону. Обозначим сродство к электрону атома В через Ец. Очевидно, в сумме затрата энергии на образование ионов А+ и В будет равна /л—/ в- Затрата энергии на образование ионов В + и А во втором случае в сумме будет равна (/в—Ех), где /в — энергия ионизации атома В, а а — сродство атома А к электрону. [c.60]

    Существует несколько способов расчета электроотрицательностей атомов. В одном из них электроотрицательностью атомов считают сумму его энергии ионизации и сродства к электрону. Допустим, что электрон атома А переходит к атому В с образованием молекулы А+В . При таком переходе на отрыв электрона от атома А будет затрачена энергия ионизации ЭНд. Однако в результате присоединения электрона к атому В выделится энергия, равная энергии сродства к электрону СЭв. Общая энергия в системе АВ изменится на величину СЭв — ЭИл. Если электрон, наоборот, перейдет от атома В к атому А, то общая энергия системы изменится на величину СЭд —ЭИв. На самом деле электрон перейдет в направлении, которое обеспечивает большое выделение энергии. Если [c.101]

    В развитие классич. представлений о способности атома вступать в X. с. с другими атомами, проявляя ту или иную валентность, каждому атому была сопоставлена нек-рая численная величина, получившая назв. электроотрицательности (Л. Полинг, 1932). Эта величина Характеризует силу притяжения электронов к данному атому при образовании X. с. Если электронная пара смещается в сторону одного из атомов, он считается более электроотрицательным, чем второй. Чем больше разность электроотрицательностей атомов, образующих X. с., тем более эта связь близка к ионному типу. Использование электроотрицательности основано на простых эмпирич. ф-лах, связывающих ее с длинами связей и др. характеристиками строения молекул. Однако как всякая характеристика, не учитывающая окружение атома в молекуле, электроотрицательность имеет весьма ограниченную применимость. По своему определению электроотрицательность весьма близка к сродству к электрону (либо к потенциалу ионизации), однако первое понятие относится к нек-рому эффективному атому в молекуле, тоща как второе - к взаимод. о д, льного атома (либо иона) со свободным электроном. [c.235]


    Различие в стабильности хлорониевых, бромониевых и иодоние-вых соединений объясняется различным сродством к электрону (электроотрицательностью) атомов галогена. Фторуглеводороды вовсе не образуют ониевые соединения. Легче всего свою электронную пару координирует атом иода. [c.248]

    Атом натрия содержит один слабо связанный электрон, а атом хлора, наоборот, не только очень прочно удерживает свои электроны, но и обладает довольно значительным сродством к электрону. Иначе говоря, электроотрицательность хлора много больше, чем натрия. Поэтому при взаимодействии между ними один электрон переходит от атома натрия к атому хлора, в результате чего образуются ионы Na+ и С1 , которые, обладая противоположным по знаку зарядом, могут притягиваться друг к другу и образовывать молекулу Na l. [c.58]

    Таким образом, электрон, переместится к атому того элемента, который имеет ббльшую электроотрицательиость. Электроотрицательность характеризует стремление данного атома к присоединению электронов при образовании Х1Т ми ческой связи. Приведенный способ вычисления электроотрйцательности был предложен Малликеном (США). Недостаток этого метода состоит в том, что сродство к электрону известно лишь для немногих атомов. [c.133]

    Следует отметить, что понятия сродство к электрону и электросродство (111 5 доп. 13) отнюдь не совпадают первое относится к изолированному атому, тогда как второе — к атому в молекуле. Сам по себе термин электросродство более правилен, чем термин электроотрицательность , так как речь идет о тенденции входящего в состав молекулы атома к присвоению электронного облака валентной связи, анеосостоянии этого атома. [c.120]

    Самопроизвольная передача электрона от металлического атома к атому неметалла в действительности вряд ли осуществляется.. Дело в том, что потенциал ионизации первого порядка даже для наиболее активных щелочных металлов больше, чем сродство к электрону типических электроотрицательных элементов. С эгой точки зрения оказывается энергетически невыгодным образование молекулы Na l из элементов, так как первый ионизационный потенциал натрия равен 5,14 В, а сродство к электрону атом хлора — [c.85]

    Термин поверхностный центр в хемосорбции определяется как один или микроскопическая группа атомов на поверхности, которая в каком-либо смысле химически активна. Наряду с рассмотренными выше атомами, связанными, например, с дефектами, кристаллографическими ступеньками и т. д., это может быть, иапример, атом с оборванной связью , катион, нескомпенсированный необходимым числом аииоиов, кислотный или основной центр . Кислотные центры Льюиса обладают свободными орбиталями с высокой энергией сродства к электронам, кислотные центры Врен-стеда обладают тенденцией отдавать протон. Один вид этих центров может переходить в другой. Так, при взаимодействии с водой -f НоО = (L ОН) 4-Hs на поверхности, кислотный центр Льюиса L+ делит электронную пару с ОН , а остающийся адсорбированный протон Н+ может вступать в химические реакции, представляя собой теперь кислотный центр Вренстеда, Если группа ОН связана с катионом менее прочно, чем Н+ с решеточным ионом О , она становится основным центром Вренстеда и вещество будет проявлять основные свойства. Они связаны с электроотрицательностью металла и кислотность окислов уменьшается в следующем ряду  [c.130]

    Если молекула симметрична и в ней ковалентно связаны два одинаковых атома, как в молекулах На, I2 или СН3—СНз, то электронное облако симметрично центру связи, дипольный момент молекулы равен нулю. Оба электрона, участвующие в образовании связи, с одинаковой вероятностью находятся около каждого из соединенных атомов. Но если связанные атомы неодинаковы или молекула не симметрична, то электронная плотность сдвинется к одному из атомов и вероятность пребывания связывающих электронов в поле этого атома возрастет. Таким образом, один атом обычно бывает более электроотрицательный (электроотрицательность — это способность атома в молекуле притягивать к себе электроны). Мерой способности к такому присоединению служит так называемое сродство к электрону, характеризующее энергию, выделяющуюся при присоединении электрона к нейтральному атому. Следствием вышеуказанного сдвига будет появление частичных, очень маленьких зарядов (доля заряда электрона) на связанных ковалентной связью атомах, в результате чего связь приобретает частично ионный характер. Примером может служить молекула НС1, где электронная плотность сдвинута (за счет гибpидизaции ) к атому хлора. Такую ковалентную связь называют полярной. Молекула, содержащая полярную ковалентную связь, обладает дипольным моментом, равным произведению [c.46]

    Самопроизвольная передача электрона от металлического атома к атому неметалла в действительности вряд ли осуществляется. Дело в том, что потенциал ионизации первого порядка даже для наиболее активных щелочных металлов больше, чем сродство к электрону типичных электроотрицательных элементов. С этой точки зрения оказывается энергетически невыгодным образование ионной молекулы Na l из элементов, так как первый ионизационный потенциал натрия равен 5,14 В, а сродство к электрону атома хлора — 3,7 эВ (ионизационный потенциал, выраженный в вольтах, численно равен энергии ионизации в электрон-вольтах). Из квантовой механики также следусзт, что полное разделение зарядов с возникновением идеальной ионной связи Ai B никогда не может осуществиться, так как из-за волновых свойств электрона вероятность его нахождения вблизи ядра атома А может быть мала, но отлична от нуля. [c.64]

    ЭЛЕКТРООСМОС, см. Электрокинетические явления. ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ, характеризует способность атома к поляризации ковалентных связей. Если при образовании двухатомной молекулы А—В электроны связи смещаются в сторону атома В, он считается более электроотрицательным, чем атом А. Для количеств, оценки Э. предложен ряд методов. Наиб, ясный физ. смысл имеет метод, предложенный Р. Маллике1юм, к-рый определил Э. атома как полусумму его сродства к электрону и потенциала ионизации. Употребление ЭГ по Малликену ограничено из-за трудностей получения достоверных значений сродства к электрону атомов. Чаще всего применяют термохим. систему, разработанную Л. Полингом, согласно к-рой Э. атомов А и В определяют, исходя из энергий связей А—В, А—А и В—В. Э. атомов используется в физ.-хим. исследованиях благодаря наличию простых эмпирич. ф-л, связывающих ее с длинами и др. характеристиками хим. связей. [c.702]

    Водородная связь. Водородная связь - взаимодействие одного молекулярного фрагмента АН и атома В другого фрагмента с образованием системы А-Н-В, в которой атом водорода играет роль мостика, соединяющего А и В. Эти фрагменты могут принадлежать как разным, так и одной и той же моле1 ле. В качестве А и В выступают обычно так называемые электроотрицательные атомы, т.е. те, которые обладают достаточно большим сродством к электрону, так что в молекулах около них сосредотачивается избыточный электрический отрицательный заряд О, N, F, в меньшей степени S, Р, С1 и т.п. Межъядерное расстояние Н-В обычно остается несколько большим, чем А-Н даже при одинаковых атомах А и В, хотя в таком соединении, как (F-H-F) наблюдается полная выровненность этих расстояний. [c.479]

    АЛЮМИНИЙ (от лат alumen, род падеж alumi-nis-квасцы, лат Aluminium) Al, хим элемент П1 гр периодич системы, ат н 13, ат м 26,98154 В природе один стабильный изотоп А1 Поперечное сечение захвата тепловых нейтронов 215 10 м Конфигурация внеш электронной оболочки 3s 3p, степень окисления + 3, менее характерны + 1 и + 2 (только выше 800 С в газовой фазе), энергия ионизации АГ -> А1 -> Ар -> А1 соотв 5,984, 18,828, 28,44 эВ, сродство к электрону 0,5 эВ, электроотрицательность по Полингу 1,5, атомный радиус 0,143 нм, ионный радиус А1 (в скобках указаны координац числа) 0,053 нм (4), 0,062 нм (5), 0,067 нм (6) [c.116]

    МАГНИЙ (Magnesшm) Mg, хим элемент II гр периодич системы, ат н 12, ат м 24,305, относится к щелочноземельным элементам Прир М состоит из трех стабильных изотопов Mg (78,60%), Mg (10,11%) и (11,29%) Поперечное сечение захвата тепловых нейтронов для прир смеси изотопов 5,9 10" м Конфигурация внеш электронной оболочки 3i , степень окисления -(-2, очень редко -(-1, энергии ионизации Mg -> Mg -> Mg равны соотв 7,64607 и 15,0353 эВ, электроотрицательность по Полингу 1,2, сродство к электрону —0,22 эВ, атомный радиус 0,160 нм, ионные радиусы для Mg (в скобках указаны координац числа) 0,071 нм (4), 0,08 нм (5), 0,086 нм (6), 0,103 нм (8) [c.621]

    МЕДЬ (лат. uprum-от назв. о. Кипр, где в древности добывали медную руду) Си, хим. элемент I гр. периодич. системы, ат. н. 29, ат. м. 63,546. Прир. М. состоит из смеси двух стабильных изотопов Си (69,09%) и Си (30,91%). Поперечное сечение захвата тепловых нейтронов для прир. смеси 3,11 10 м . Конфигурация внеш. электронной оболочки ато.ма 3d °4s степени окисления 4-1, +2, редко -1-3, + 4 энергии ионизации Си°-> Си" - Си " - Си " соотв. равны 7,7264, 20,2921, 36,83 эВ сродство к электрону 1,8 эВ электроотрицательность по Полингу 1,9 атомный радиус 0,128 нм, ионные радиусы (в скобках указаны координац. числа) Си" 0,060 нм (2), 0,074 нм (4), 0,091 нм (6), Си 0,071 нм (2), 0,079 нм (5), 0,087 нм (6) работа выхода электрона 4,36 эВ. [c.6]

    НИОБИЙ (от имени Ниобы-дочери Тантала в др.-греч. мифологии лат. №оЫцт) КЬ, хим. элемент V гр. периодич системы, ат. н. 41, ат. м. 92,9064. В природе один стабильный изотоп КЬ. Поперечное сечение захвата тепловых нейтронов 1,15-10 м . Конфигурация внеш. электродных оболочек атома 45 4р 4степени окисления -Ь 5, ре е -Ь4, -Ь 3, -ь2 и -Н 1 энергии ионизации при последоват переходе от КЬ к КЪ равны соотв. 6,882, 14,320, 25,05, 38,3, 50,6, 103 и 124,6 эВ сродство к электрону 1,13 эВ работа выхода электрона 4,01 эВ электроотрицательность по Полингу 1,6 атомный радиус 0,145 им, ионные радиусы (в скобках указано координац. число) КЬ " 0,085 нм (6), КЬ + 0,086 нм (6), КЪ - 0,082 нм (6), 0,092 нм (8), КЬ= + 0,062 нм (4), 0,078 нм (б), 0,083 нм (7), 0,088 нм (8). [c.249]

    ОСМЙЙ (от греч. osnie-запах лат. Osmium) Os, хим. элемент VIII гр. периодич. системы ат.н, 76, ат,м. 190,2 относится к платиновым металлам. В природе семь стабильных изотопов Os (0,018%), Os (1,59%), Os (1,64%), Os (13,3%), 0s (16,1%), 9 Os (26,4%), Os (41 1%), Конфигурация внеш, электронных оболочек атома 5d 6s степени окисления -1-4, -1-6, -t-8 (наиб, характерны), -Н1, 4-3, +5 энергии ионизации Os°-> Os -> Os 8,5 эВ, 17 эВ электроотрицательность по Полингу 2,1 сродство к электрону 1,44 эВ атомный радиус 0,135 нм, ионные радиусы (в скобках приведены координац, числа) для Os 0,077 нм (6), Os -" 0,072 нм (6), Os + 0,069 нм (6), Os " 0,067 нм (6), Os + 0,053 нм (4), [c.416]

    РТУТЬ (Hydrargyrum), Hg, хим. элемент II гр. периодич. системы, ат.н. 80, ат.м. 200,59. Природная Р. состоит из семи стабильных изотопов Hg (О 146%), Hg (10,02%), "" Hg (16,84%), " Hg (23,13%), Hg (13,22%), " "Hg (29,80%), " " Hg (6,85%). Поперечное сечение захвата тепловых нейтронов Для прир. смеси изотопов 38 10 " м". Кон( <игурация внеш. электронных оболочек атома степень окисления + 1 и + 2 энергии ионизации Hg Hg+-.Hg" ->Hg2" соотв. 10,4376, 18,756 и 34,2 эВ сродство к. электрону — 0,19 эВ работа выхода электрона 4,52 эВ электроотрицательность по Полингу 1,9 атомный радиус 0,155 нм, ковалентный радиус 0,149 нм, ионный радиус (в скобках указано координац. число) Hg 0,111 нм (3), 0,133 нм (6), Hg"+ 0,083 нм (2), 0,110 нм (4), 0,116 нм (6), 0,128 нм (8). [c.278]

    РУБЙДИЙ (от лат. rubidus-красный rubidium) Rb, хим. элемент I гр. периодич. системы, ат. н. 37, ат, м. 85,4678 относится к щелочным металлам. В природе встречается в виде смеси стаб. изотопа Rb (72,15%) и радиоактивного Rb (27,85% 4,8-10 лет, Р-излучатель). Поперечное сечение захвата тепловых нейтронов для прир. смеси 0,73 10 м . Конфигурация внеш. электронной оболочки атома 5s степень окисления -fl энергии ионизации Rb° - Rb" - Rb 4,17719 эВ, 27,5 эВ сродство к электрону 0,49 эВ электроотрицательность по Полингу 0,8 работа выхода электрона 2,16 эВ металлич. радиус 0,248 нм, ковалентный радиус 0,216 нм, ионный радиус Rb 0,166 нм (координац. число 6), 0,186 нм (12). [c.282]

    СЕЛЁН (от греч. selene-Луна лат. Selenium), Se, хим. элемент VI гр. периодич. системы, относится к халькогенам, ат. н. 34, ат. м. 78,96. Природный С. состоит из шести изотопов Se(0,87%), Se(9,02%), Se(7,58%), Se(23,52%), Se(49,82%) и "Se(9,I9%). Поперечное сечение захвата тепловых нейтронов для прир. смеси 2,3 Ю " м". Конфигурация внещ. электронной оболочки атома 4р степени окисления —2, 4-4 и -1-6, редко -1-2 энергии ионизации при последоват. переходе от Se к Se -" равны 9,752, 21,2, 32,0, 42,9, 68,3, 81,7 эВ сродство к электрону 2,020 эВ электроотрицательность по Полингу 2,40 йтомный радиус 0,160 нм, ионные радиусы (нм, в скобках даны координац. числа) Se" 0,184 (6), Se -" 0,064 (6), Se -" 0,04 (4), 0,056 (6). [c.311]

    СЁРА (8и1Гш-) S, хим. элемент VI гр. периодич. системы, ат. н. 16, ат. м. 32,066 относится к хальквгенам. Природная С. состоит из четырех изотопов 8(95,084%), 3(0,74%), 8(4,16%), S(0,016%). Поперечное сечение захвата тепловых нейтронов для прир. смеси изотопов 0,52-10 м . Конфигурация внеш. электронной оболочки атома ip наиб, характерные степени окисления — 2, + 4, + 6 энергии ионизации при последоват. переходе от S° к равны соотв. 10,3601, 23,35, 34,8, 47,29, 72,5, 88,0 эВ сродство к электрону 2,0772 эВ электроотрицательность по Полингу 2,58 атомный радиус 0,104 им, ионные радиусы (в скобках даны координац. числа), нм 0,170 (6), 0,051-(6), 0,026 (4). [c.319]

    СКАНДИЙ (S andium) S , хим. элемент III гр. периодич. системы, ат. н. 21, ат. м. 44,9559 относится к редкоземельным э цементам. Известен один прир. стабильный изотоп S . Поперечное сечение захвата тепловых нейтронов 1,66-10м . Конфигурация внеш. электронных оболочек атома Зй 4s устойчивая степень окисления + 3, редко -(- 1 -Ь 2 энергии ионизацйи при последоват. переходе от S к S " равны соотв. 6,5616, 12,80 и 24,76 эВ сродство к электрону — 0,73 эВ электроотрицательность по Полингу 1,3 атомный радиус 0,164 нм, ионный радиус S 0,089 нм (коорд1шац. число 6), 0,101 нм (8). [c.359]

    СУРЬМА (от тур. siirme лат. stibium) Sb, хим. элемент V гр. периодич. системы, ат. н. 51, ат. м. 121,75. Природная С.-смесь двух изотопов Sb (57,25%) и Sb (42,75%). Поперечное сечение захвата тепловых нейтронов 5,7 х X 10" м . Конфш7рация внеш. электронной оболочки атома 5i 5p степени окисления -ьЗ и 4-5, редко —3 энергии ионизации при последоват. переходе от Sl к Sb 8,64, 16,5, 25,3, 44,1, 60 эВ сродство к электрону 0,94 эВ электроотрицательность по Полингу 1,9 атомньш радиус 0,161 нм, ионные радиусы, нм (в скобках указаны координац. числа) Sb - 0,090 (4), 0,94 (5), 0,090 (6), Sb 0,074 (6). [c.475]

    ТЕЛЛУР (от лат. tellus, род. падеж telluris-Земля лат. Tellurium) Те, хим. элемент VI гр. периодич. системы, относится к халькогеном, ат. н. 52, ат. м. 127,60. Природный Т. состоит из восьми изотопов Те (0,089%), Те (2,46%), Те (0,89%), Те (4,74%), Те (7,03%), Те (18,72%), " Те (31,75%) и Че (34,27%). Конфигурация внеш. злектронной оболочки Ss Sp степени окисления —2, + 4, +6, редко +2 энергия ионизации при последоват. переходе от Те к Те " 9,010, 18,6, 28,0, 37,42, 58,8, 72,0 эВ сродство к электрону 2 эВ электроотрицательность по Полингу 2,10 атомный радиус 0,17 нм, ионные радиусы, нм (в скобках указаны координац. числа) Те 0,207(6), Те 0,066(3), 0,80(4), 0,111(Q, Те -" 0,057(4), 0,070(6). [c.513]


Смотреть страницы где упоминается термин Сродство атома к электрону. Электроотрицательность: [c.405]    [c.589]    [c.51]    [c.71]    [c.26]    [c.152]    [c.33]    [c.605]    [c.178]    [c.270]    [c.441]    [c.377]   
Смотреть главы в:

Общая и неорганическая химия Изд.3 -> Сродство атома к электрону. Электроотрицательность




ПОИСК





Смотрите так же термины и статьи:

Атомы электроотрицательность, Электроотрицательность атомов

Сродство

Сродство к электрону

Электрон в атомах

Электроотрицательность

Электроотрицательность атома



© 2025 chem21.info Реклама на сайте