Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Заряд атомов эффективный

    Эффективные заряды. Когда атом образует химическую связь, его электронная плотность меняется. Это изменение можно учесть, приписав атому некоторый эффективный заряд б (в единицах заряда электрона). Эффективные заряды, выражающие асимметрию электронного облака, носят условный характер, так как электронное облако делокализовано и его нельзя разделить между ядрами. [c.148]


    Вследствие смещения электронной пары к одному из ядер повышается плотность отрицательного заряда у данного атома и соответственно атом получает заряд, называемый эффективным зарядом атома б-. У второго атома повышается плотность положительного заряда 5+. Вследствие этого возникает диполь, представляющий собой электрически нейтральную систему с двумя одинаковыми по величине положительным и отрицательным зарядами, находящимися на определенном расстоянии (длина диполя) /д друг от [c.39]

    Эффективные заряды. При образовании химической связи электронная плотность у атомов меняется. Так, при связывании двух атомов элементов, имеющих различные электроотрицательности, атом более электроотрицательного элемента притягивает электроны сильнее, чем атом менее электроотрицательного элемента. В результате электронная плотность в молекуле распределяется вдоль химической связи асимметрично. Изменение электронной плотности у атома, связанного в молекуле, можно учесть, приписав атому некоторый эффективный заряд 5 (в единицах заряда электрона). Эффективные заряды, характеризующие асимметрию электронного облака, условны, так как электронное облако делокализовано и его нельзя разделить между ядрами. [c.77]

    Влияние давления водорода на селективность протекания Сз- и Сб-дегидроциклизации н-гептана и н-октана в присутствии нанесенных Pt-катализаторов обсуждается в интересном цикле работ И. И. Левицкого, X. М. Ми-начева и сотр. [132—135]. В частности показано, что увеличение давления Нг изменяет направления Сз- и Сб-дегидроциклизации н-октана при 375°С над Pt/ в сторону большего образования 1,2-дизамешенных циклов (1-метил-2-этилциклопентан и о-ксилол). Предполагают, что обе реакции проходят через обшую стадию— образование моноадсорбированных комплексов, строение которых определяет направление этих реакций, а последуюшие превращения ведут к возникновению пя-ти- или шестичленных циклов. При этом авторы исходят из развиваемой ими концепции, согласно которой направления Сз- и Сб-дегидроциклизации н-октана определяются соотношением эффективных зарядов С-атомов реагирующей молекулы углеводорода и атомов (ионов) металла, входящего в катализатор. В зависимости от указанного соотношения атом металла вытесняет из молекулы углеводорода либо протон (далее осуществляется протонный механизм), либо гидрид-ион ( гидрид-ионный механизм) с последующим образованием моно-адсорбированного комплекса. Последующий путь циклизации н-октана с образованием пятичленного цикла или ароматического углеводорода определяется второй стадией процесса циклизации — образованием диадсор-бированного комплекса. Представления, изложенные в работах [132, 134], иллюстрируются следующей схемой, [c.234]


    Смещение общего электронного облака при образовании полярной ковалентной связи приводит к тому, что средняя плотность отрицательного электрического заряда оказывается выше вблизи более электроотрицательного атома и ниже —вблизи менее электроотрицательного. В результате первый атом приобретает избыточный отрицательный, а второй — избыточный положительный заряд эти заряды принято называть эффективными за рядами атомов в молекуле. [c.125]

    Появление иа атомах эффективных зарядов приводит к появлению ионной добавки в энергии связи и тем большей, чем выше значение зарядов. Представляя, таким образом, полярную связь как суперпозицию ковалентной и ионной компонент, можно выделить последнюю и по известным межатомным расстояниям рассчитать эффективные заряды атомов в ряде простых кристаллических веществ. В табл. 50 приведены термохимические заряды ато.мов. [c.103]

    Связь между атомами разных элементов всегда более или менее полярна, что обусловлено различием размеров и электроотрица-т(льностей атомов. Например, в молекуле хлорида водорода НС1 стязующее электронное облако смещено в сторону более электро-огрицательного атома хлора. Вследствие этого заряд ядра водорода уже не компенсируется, а на атоме хлора электронная плотность становится избыточной по сравнению с зарядом ядра. Иными словами, атом водорода в НС1 поляризован положительно, а атом хлора отрицательно на атоме водорода возникает положительный заряд, на атоме хлора — отрицательный. Этот заряд б, называемый эффективным, можно установить экспериментально. Согласно имеющимся данным эффективный заряд на атоме водорода молекулы H I составляет бн = +0,18, а на атоме хлора 6 i = —0>18 абсолютного за-р 1да электрона. Можно сказать, что связь в молекуле НС1 имеет на 18% ионный характер, т. е. полярна. Ниже приведены значения эффективных зарядов на атомах кислорода в оксидах элементов 3-го периода  [c.80]

    Как уже обмечалось, в субстратах типа Е—Y на первом атоме электроположительной уходящей группы Е— расположен центр электрофильности (остаточной). Если этот атом представляет собой sp -углерод, то единственной причиной такой электрофильности служит частично свободная орбиталь с дробным положительным зарядом, обусловленным эффективной электроотрицательностью (индукционным влиянием) электроотрицательной уходящей группы [c.304]

    Эффективные заряды ато.мов в кислородных соединениях [c.225]

    В которых участвующие во взаимодействии ядра находятся на расстоянии Я от атома с пр-орбиталью [5]. Мы не будем вдаваться в детали этих вычислений и ограничимся тем, что обратим внимание на рис. 4.3. На рисунке изображена зависимость главных значений Вуу, В гг тензора анизотропного взаимодействия с протоном от расстояния Я для различных эффективных зарядов ато- [c.285]

    Уменьшение экстрагируемости при переходе от (/) к (II) и (III) обусловлено уменьшением донорной способности атома серы (возрастанием эффективного положительного заряда на атоме серы). Установлена линейная корреляция между величиной эффективного положительного заряда и эффективной константой экстрагирования для Ag. На основании рентгеновских и ИК-спектроскопических измерений показана координация (I) и (II) к палладию через атом серы. [c.282]

    Молекула тем более полярна, чем больше смещена обы1ая электронная пара к одному из атомов, т. е. чем выше эффективные заряды ато.мов и чем больше длина диполя 1. Поэтому в ряду сходно построенных молекул дипольный момент возрастает по мере увеличения разности электроотрицательностей ai OMOs, образующих молекулу. Например, дипольные моменты НС1, НВг и HI равны соответственно 1,04 0,79 и 0,38 D, что связано с уменьшением разности электроотрицательностей атомов при переходе от НС1 к НВг и HI (см. табл. 4.2). [c.139]

    В формулу Бете входит так называемый средний потенциал ионизации среды I Z), учитывающий, что ионизация происходит с любой орбитали, но эффективность ее падает по мере увеличения потенциала ионизации атомного электрона. Значение/(2) находят экспериментально. Зависимость I Z) от заряда ато- [c.20]

    Мы привели здесь это курьезное замечание потому, что подобное мнение среди химиков стало почему-то распространенным. Валентное состояние атома — не просто некий нуль отсчета . Оно было введено в теорию ВС с целью распространить ее на случай, когда число неспаренных электронов в основном состоянии атома меньше числа образуемых им двухэлектронных двухцентровых связей. Вместе с тем, это понятие используется и в методе молекулярных орбиталей, в рамках которого оно обычно понимается как эффективная электронная конфигурация с дробными заселенностями АО и эффективными зарядами, что позволяет учесть как промотирование электронов с одних АО на другие, так и их перенос от атома к атому при образовании химических связей (см. приведенный выше пример для ряда С—СО— —СО2). И используется это понятие в обоих методах не только для построения качественной теории, но и при квантовомеханических расчетах .  [c.174]

    Однако анализ температур кипения водородных соединений элементов IV—VI групп указывает на аномальное поведение аммиака ЫНз, воды Н2О и фтороводорода НР(в) по сравнению с водородными аналогами азота, кислорода и фтора соответственно, что обусловлено действием более эффективных межмолекулярных сил, которые носят название водородной связи. Единственный электрон атома водорода обусловливает возможность образования им только одной ковалентной связи. Однако если эта связь сильно полярна, например в соединениях водорода с наиболее электроотрицательными элементами (Г, О, Ы), то атом водорода приобретает некоторый положительный заряд. Это позволяет электронам другого атома приблизиться [c.38]


    Рентгеноспектральный метод позволяет определить эффективные заряды атомов, а следовательно, и тип химической связи в соединениях. Для этого сравнивают расположение линий рентгеновского спектра свободных атомов и их соединений. Если атом в соединении имеет соответствующий эффективный заряд б, то линии спектра оказываются [c.172]

    Эти оценки полностью согласуются с элементарными электростатическими вычислениями при использовании модели точечных диполей. Согласно таким вычислениям, поляризация молекулы воды может давать существенный вклад в этот процесс. Ранее при изучении ионизации щелочных металлов замечено, что небольшие добавки ацетилена в горючую смесь приводят к более быстрому установлению равновесного уровня ионизации. По всей видимости, это связано с образованием в зоне реакции ионов НзО+ и с последующим процессом передачи заряда атому натрия. Однако Шофилд [144] показал, что такой механизм может эффективно проявить себя только при малой степени нонизации металлов — порядка нескольких процентов. Результаты его экспериментов при больших степенях равновесной ионизации (10—70%) свидетельствуют о незначительном влиянии добавок ацетилена в катализе процесса ионизации. [c.269]

    Характеристика элемента. Бериллий, так же как и литий, относится к числу -элементов. Четвертый электрон, появляющийся в атоме Ве, помещается на 25-орбитали. Энергия ионизации бериллия выще, чем у лития, из-за большего заряда ядра. Эффективный заряд ядра, влияющий на четвертый -электрон, равен гэфф=1,66. В результате взаимодействия ядра с электронным окружением атом становится меньше (/ ве=1,ИА). Удалить электроны с 2 -орбиталп не просто первый потенциал ионизации почти в два раза больше, чем у лития, а второй потенциал так высок (18,2 эВ), что существование иона Ве + (с полной потерей двух электронов) практически невозможно. Даже в соединениях с фтором связи Ве—Р в значительной степени ковалентны, не говоря уже о связях с другими элементами. Следовательно, степень окисления -Ь2, приписываемая ему, величина условная. Для образования ковалентных связей бериллию необходимо разъединение (распаривание) 25-электронов. Чтобы это произошло, один из них должен перейти на более высокую 2р-орбиталь. Таким образом, когда атом бериллия переходит в такое состояние, его два электрона занимают две эквивалентные 5р-гибридизованные орбитали. Несмотря на то что связи бериллия в основном ковалентны даже в простых солях, все же был оценен его примерный ионный радиус 0,31 А. Это меньше, чем у атома водорода и иона Н+, и, следовательно, создает значительное поле положительного заряда и делает его способным прочно связывать анион кислорода, даже отнимая его у гидроксил-иона  [c.205]

    Для перехода от водородоподобного к реальному атому Хэнль ввел ряд поправок. Во-первых, была введена поправка на экранирование заряда ядра. Эффективный заряд ядра для Х-электронов был принят Z — 5, где 5 — константа Слейтера, равная 0,3. Во-вторых, влияние внешних электронов было сведено к дополнительному потенциалу в области / -оболочки. Наконец, в выражении для энергии ионизации к величине Z — добавлялась реляти- [c.73]

    Рентгеноспектральный метод позволяет определить эффективные заряды атомов, а следовательно, и тип химической связи в соедине-ненн5.х. Для этого сравнивают расположение линий рентгеновского спектра свободных атомов и их соединений. Если атом в соединении имев соответствующий эффективный заряд б, то линии спектра оказываются смещенными по сравнению со спектрами свободного атома. По величине смещения спекФральных линий соответствующими метода, и расчета определяют б. В табл. 12 приведены полученные таким путем значения эффективных зарядов атомов для некоторых соединений. [c.143]

    Как указывалось в 34, атомы неметаллов характеризуются положительными значениями сродства к электрону при присоединении электрона к такому атому выделяется энергия. Однако присоединение второго электрона к атому любого неметалла требует затраты энергии, так что образование простых многозарядных анионов (например, 0 , N -) оказывается энергетически невыгодным. Поэтому в таких соединениях как оксиды (ВаО, А1пОз и др.) или сульфиды (например, 2пЗ, СиВ) не образуется чисто ионная связь здесь химическая связь всегда носит частично ковалентный характер. Вместе с тем, многозарядные сложные анионы (ЗО , СОз, РОГ и т. п.) могут быть энергетически устойчивыми, поскольку избыточные электроны распределены между несколькими атомами, так что эффективный заряд каждого из атомов не превышает заряда электрона. [c.151]

    Но даже в типичных ионных соединениях, например, в гало-генидах щелочных металлов, не происходит полного разделения отрицательного и положительного зарядов, т. е. полного перехода электрона от одного атома к другому. Например, в кристалле ЫаС эффективный отрицательный заряд атома хлора составляет лншь 0,94 заряда электрона таким же по абсолютной величине положительным зарядом обладает и атом натрия. [c.151]

    Возникновение водородной связи можно в первом приближении объяснить действием э.".ектростатнческих сил. Так, при образовании полярной ковалентной связи между атомом водорода и атомом фтора, который характеризуется высокой электроотр1щатель-исстью, электронное облако, первоначально принадлежав- /С шее атому водорода, сильно смещается к атому фтора. В результате атом фтора приобретает значительный эффективный отрицательный заряд, а ядро атома водорода (протон) с внешней ио отношению к атому ([)тора стороны почти лишается электронного облака. [c.155]

    Не следует думать, что комплексные соединения всегда построены из ионов в действительности эффективные заряды птомоа н молекул, входящих в состав комплекса, обычно невелики. Более правильно поэтому пользоваться термином центральвшй атом . Ионные представления о природе связи в комплексных соединениях носят в некоторой степени формальный характер, одиако они удобны для классификации и определения зарядов комплексов и позволяют качественно предсказать некоторые их свойства. [c.583]

    Причина изменения свойств аммиака заключается в том, что при его координации происходит смещение электронной плотности к поломайте, 1ьно заряженному центральному атому. В результате эффективный отрицательный заряд атома азота в молекуле N11,1 резко снижается, что и облегчает отщепление протона. [c.604]

    Представление об эффективных зарядах атомов приводит к следующей картине реакции атома натрия (в общем случае — атома щелочного металла) с молекулой R 1 (в общем случае — с молекулой RX, где X — атом галогена). При приблнжоиии атома натрия к молекуле R I происходит смещение электронного облака от атома натрия к атому хлора. Нужно поэтому ожидать, что чем Солее эффективный заряд атома хлора, тем должно быть более затруднительно перераспределение электронной плотности в комплексе R 1—Na и тем бо.гыпе должна быть энергия активации. [c.153]

    На рисунке 48 показана зависимость энергии I s-электронов атома азота от эффективного заряда атома азота в соединении. Эти данные говорят о том, что при степени окисления азота в NaNO.i атом азота имеет эффективный заряд [c.83]

    Вещество Атом и его степень окисления Эффективный заряд Л Вещество Лтом и его степень окислоНИИ Эффективный заряд 6 [c.84]

    Известно, что бор ча Стично растворяется в решетке, о.бразуя раствор замещения, а частично локализуется на границах кристаллитов, находясь как в атомарном состояиии, так и в виде вкраплений фазы карбида бора. Каждый атом замещеиия создает в валентной зоие одну дырку, тем самым изменяя концентрацию носителей заряда. Однавременно р.аств.орен1ие бора в решетке должно вызвать дополнительное рассеяние и соответственно уменьшение эффективной длины свободного пробега носителей заряда. В отличие от этого бор, находящийся на границах кристаллитов, не изменяет концентрацию носителей заряда и, очевидно, не влияет на их рассеяние (это предположение справедливо до тех пор, пока [1], существованием другой фазы можно пренебречь). [c.163]

    Значения эффективных зарядов, полученные различными методами, расходятся. Тем не менее имеющиеся значения б свидете.яьствуют о том, что атом в соединении не проявляет высокого заряда и чисто ионных соединений не существует (стр. 103). [c.173]

    В образовании сложного нуклеофила, обладающего высокой степенью эффективности действия, принимает участие наряду с 8ег-1.95 также и имидазольная Труппа Н18-57 (см. [2, 6—9, 16]). При этом атом азота N"2 гистидина образует водородную связь с кислородом гидроксила серина (рис. 31). Вторая водородная связь, как полагают Блоу и др. [37], существуех между атомом азота № гистидина-57 и карбоксильной группой остатка Азр-102, расположенного В глубине ферментной глобулы. Система водородных связей приводит к увеличению отрицательного заряда на гидроксильной группе 8ег-195, что способствует усилению ее нуклеофильности. [c.129]

    Принципиально большую эффективность новых физических методов можно показать на образном примере, приведенном М. Штакель бергом один грамм-атом — это пылинка, но заряд величиной в один фарадей может сообщить всему земному шару потенциал 160 миллионов вольт. [c.255]


Смотреть страницы где упоминается термин Заряд атомов эффективный: [c.322]    [c.259]    [c.142]    [c.78]    [c.499]    [c.389]    [c.404]    [c.513]    [c.60]    [c.138]    [c.321]    [c.99]    [c.77]    [c.616]    [c.117]   
Физическая химия (1987) -- [ c.618 ]




ПОИСК





Смотрите так же термины и статьи:

Зависимость от эффективного заряда. атома в соединении

Заряд атома эффективная плотность

Катионы. Работы ионизации атомов. Эффективный заряд ядра

Коэффициенты при атомных функциях в методе ЛКАО и эффективные заряды на атомах

Разность электроотрицательностей и эффективные заряды атомов

Расчет эффективного заряда атомов

Электроотрицательность и эффективные заряды атомов

Энергия ионизации атома и эффективный заряд ядра

Эффективные заряды и химическое взаимодействие атомов

Эффективный заряд



© 2025 chem21.info Реклама на сайте