Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлор электроотрицательность

    В большинстве соединений хлор как сильно электроотрицательный элемент (ЭО =3,0) выступает в отрицательной степени окисления —1. В соединениях же с более электроотрицательными фтором, кислородом и азотом он проявляет положительные степени окисления. Особо разнообразны соединения хлора с кислородом, в которых степени окисления хлора +1, -f3, +5 и +7, а также +4 и Ч-6. [c.286]


    Большое влияние на растворяющую способность оказывает водородная спязь, которая образуется под влиянием электростатического притяжения протона одной молекулы к аниону или электроотрицательному атому (например, фтора, кислорода, азота, хлора) другой молекулы. Наличие водородной связи приводит к ассоциации молекул, например для метилового спирта  [c.87]

    Энергия взаимного притяжения молекул для всех указанных типов взаимодействия приблизительно обратно пропорциональна шестой степени расстояния между молекулами. Указанные взаимодействия в некоторых случаях приводят к ассоциации молекул жидкости (так называемые ассоциированные жидкости). Между молекулами ассоциированной жидкости образуются кратковременные непостоянные связи, К таким связям относится водородная связь, которая создается за счет электростатического притяжения протона одной молекулы к аниону или электроотрицательному атому (главным образом к атомам фтора, кислорода, азота, хлора) другой молекулы. [c.163]

    В большинстве работ по изучению каталитической активности оксида алюминия затрагивается связь ее с поверхностной кислотностью. Обширная дискуссия о природе кислотных центров оксида алюминия в настоящее время решена в пользу утверждения, что кислотность оксида алюминия связана с кислотой типа Льюиса и обусловлена ионами алюминия с координационным числом 4. Некоторые авторы предполагают наличие на поверхности оксида алюминия двух типов кислотных центров до 300 °С имеет место кислотность типа Льюиса, а выше 300 °С - Брен-стеда. В серии рабо т, где высказана эта же точка зрения, одновременно сформулированы требования к химическому составу оксида алюминия, обеспечивающему его максимальную кислотность. Кислотность оксида алюминия зависит также от содержания в нем щелочноземельных и особенно щелочных металлов (натрия). На примере реакций изомеризации олефинов установлена зависимость между содержанием натрия в оксиде алюминия и изомеризующей активностью и кислотностью. Максимальные активность в реакции изомеризации олефинов и кислотность соот-вествуют минимальному содержанию натрия в оксиде алюминия. Каталитическую активность оксида алюминия в реакциях кислотного тлпа можно усилить путем введения в его состав галогенов. Единое мнение о характере взаимодействия оксида алюминия и галогенов заключается в том, что поверхностные гидроксильньге группы оксида алюминия и, возможно часть атомов кислорода замещаются ионами хлора и фтора. Природа ак тивных центров оксида алюминия, возникающих при введении галогена и механизм влияния фтора и хлора на его поверхностную кислотность являются предметом дискуссии. Согласно Ал. А. Петрову [5, с. 72], ок сид алюминия, обработанный хлороводородом, увеличивает кислотность и приобретает каталитическую активность в том случае, когда хлорид-ион замещает одну из парных гидроксильных групп, причем водород другой гидроксильной группы, благодаря соседству электроотрицательного атома хлора, становится подвижным и способным к диссоциации в форме протона. При замещении галогеном одиночной гидроксильной группы активный центр не образуется. Структура активного центра хлорзаме-щенного оксида алюминия может быть представлена формулой [c.44]


    ИОННЫЕ СВЯЗИ. Реакция атома натрия (электроположительный элемент) с хлором (электроотрицательный элемент) является процессом переноса электрона (натрий отдает электрон хлору). При этом атом натрия [c.28]

    Роль хлора, обладающего высокой электроотрицательностью, заключается в повышении эффективного заряда иона Pt +, что благоприятствует донорно-акцепторному взаимодействию электронов углеводорода — лиганда с -орбиталями центрального иона. [c.256]

    Атомы хлора являются электрофилами (так как хлор — электроотрицательный элемент, и радикал С1- легко охватывает электрон, чтобы дополнить свой октет) и поэтому легко присоединяются к двойной связи соединения (52), образуя радикал (53). Этот радикал в свою очередь может оторвать атом хлора от второй молекулы (этот процесс можно также рассматривать как реакцию радикального замещения в молекуле С1—С1) с образованием конечного продукта присоединения (54) и еще одного атома хлора, который продолжает цепную реакцию, т. е. очень быстрая, продолжающаяся реакция возникает под действием каждого атома хлора — инициатора, образованного фотохимическим путем. Найдено, что каждый квант поглощенной энергии приводит к превращению нескольких тысяч молекул (52) в (54) цепные реакции в этом случае, как говорят, имеют высокий квантовый выход, являются длинными . Вплоть до более поздних стадий реакции, когда почти весь алкен (52) и хлор израсходуются, концентрации радикалов (53) и С1 очень малы по сравнению с концентрациями исходных веществ столкновение радикала с молекулой будет поэтому происходить гораздо чаще, чем столкновение радикала с другим радикалом. Тем не менее цепная реакция прекращается после столкновения двух радикалов, например  [c.352]

    Атом хлора, электроотрицательность которого 3,0 и атом водорода с электроотрицательностью 2,1 образуют молекулу хлористого водорода, электронная пара в которой смещена к атому хлора, и вследствие этого на нем появляется отрицательный эффективный заряд, а на атоме водорода — положительный. Из сравнения [c.95]

    Если соединение происходит между атомами, у которых электроотрицательность разная (от О до 1,9), то возникает полярный тип связи. Например, связь между водородом и хлором, электроотрицательность которых соответственно 2,1 и 2,83, будет полярной. Центр тяжести отрицательно заряженного уплотненного облака в полярном типе связи смещается к атому с большей электроотрицательностью, в данном примере — к атому хлора. [c.57]

    Хлор, электроотрицательность которого 2,8, и водород с электроотрицательностью 2,1 образуют молекулу хлористого водорода, электронная пара в которой смещена к хлору, и вследствие этого хлор заряжается отрицательно, а водород— положительно. Из сравнения величин электроотрицательностей видно, что в молекуле метана СН4 водород заряжен положительно, а в си-лане — отрицательно. [c.50]

    Важно понимать, что хотя электростатическое взаимодействие частично отрицательно заряженного Е и относительно положительного Н является основным фактором образования связи, следует также учитывать другие-факторы. Во-первых, помимо электроотрицательности атома Е, имеет значение еще его размер, поскольку например, хлор, электроотрицательность которого такая же, как у атома азота, но больший атомный радиус, не проявляет сравнимой с азотом способности образовывать водородную связь, хотя он вызывает значительную поляризацию связи Н — С1. Благодаря относительно малому радиусу и поэтому высокой концентрации заряда атомы О, N и Г могут близко подходить к ядру водорода, которое лишь слабо экранировано частично вакантной 15-орбиталью. Величины энергий водородных связей, образуемых этими элементами, зависят, конечно, от природы атома, связанного с водородом, и от молекулярного окружения этого атома, но крайние значения составляют 10 ккал/моль (41,87 10 Дж/моль) для фтора и 2 ккал/моль (8,36-10 Дж/моль) для азота значение прочности Н-связи для кислорода имеет промежуточную величину. [c.105]

    Водородная связь по прочности превосходит ван-дер-ваальсово взаимодействие, и ее энергия составляет 8—40 кДж/моль. Однако она на порядок слабее ковалентной связи. Водородная связь характерна для соединений наиболее электроотрицательных элементов фтора (25—40 кДж/моль), кислорода (13—29 кДж/моль), азота (8—21 кДж/моль) — ив меньшей степени хлора и серы. [c.92]

    Значки 5 и б соответственно указывают результирующий избыток или недостаток электронной плотности по сравнению с ядерным зарядом в той или иной части молекулы. Эти результирующие заряды по величине меньше полного заряда электрона (или протона), и поэтому 5 и 5 представляют собой дробные протонные или электронные заряды. Указываемая с их помощью полярность связи могла бы быть предсказана на основании рассмотрения шкалы электроотрицательностей элементов. Хлор (электроотрицательность 3,0) притягивает электроны сильнее, чем водород Ьлектроотрицательность 2,1). Исследуя ряд молекул (HF, НС1, НВг и Н1), мы убеждаемся, что полярность связи уменьшается по мере того, как уменьшается разность электроотрицательностей элементов, атомы которых связаны между собой в молекулу. [c.125]


    Так, в молекуле хлороводорода общая электронная пара смещена в сторону более электроотрицательного атома хлора, что приводит к появлению у атома хлора эффективного отрицательного заряда, равного 0,17 заряд электрона, а у атома водо- 09 Электрическое поле диполя, [c.125]

    В соединениях неметаллов, ие включающих водород и кислород, неметалл с большей электроотрицательностью считается отрицательно заряженным. Степень окисления такого неметалла полагается равной заряду его наиболее распространенного отрицательного иона. Например, в I4 степень окисления хлора - 1, а углерода + 4. В СН4 степень окисления водорода + 1, а углерода - 4, В SF степень окисления фтора - 1, а серы + 6, но в S2 степень окисления серы - 2, а степень окисления углерода -I- 4. В молекулах типа N4S4 с ковалентными связями (где соединяющиеся атомы имеют близкие или совпадаюшие электроотрицательности) понятие степени окисления теряет смысл. [c.416]

    В рассмотренном выще примере с НС1 приведенные численные данные создают впечатление, что электроны должны смещаться от атома С1 к атому Н, поскольку первая энергия ионизации у водорода (1310 кДж моль больще, чем у хлора (1255 кДж моль ). Однако на образование химической связи влияют не только энергии ионизации соединяющихся атомов, но также и сродство к электрону каждого из них. Сродство к электрону у С1 (356 кДж моль настолько выще, чем у Н (67 кДж моль ), что предсказание, основанное только на сопоставлении энергий ионизации, оказывается прямо противоположным истинному положению. Для выяснения распределения зарядов вдоль связи между двумя атомами следует принимать во внимание одновременно энергию ионизации и сродство к электрону-другими словами, электроотрицательность каждого из двух атомов. [c.535]

    Водородная связь возникает в результате притяжения между положительно заряженным атомом водорода и каким-либо электроотрицательным атомом, который должен быть настолько мал, чтобы протон мог сильно приблизиться к нему. Водородные связи чаще всего образуют кислород и фтор, в меньшей степени склонен к образованию связей азот, а хлор обычно слишком велик для этого. Водородные связи ответственны за многие широко известные свойства воды и льда. [c.640]

    В меньшей степени способность связываться с другими молекулами сохраняет водородный атом, связанный с атомами азота или хлора. Впрочем, как мы видели в 20, степень полярности связи зависит не только от вида атома, с которым непосредственно связан данный атом, но также и от того, с какими атомами связаны эти атомы другими валентностями. Так, водородный атом, связанный с кислородом или азотом, будет более способен к образованию водородной связи, если атомы кис /орода или азота другой своей валентностью связаны с более электроотрицательным [c.83]

    При адсорбции из растворов, наряду с поглощением нейтральных молекул, может происходить и адсорбция ионов, содержащихся в растворе. Это приводит к некоторым своеобразным явлениям. Например, основной (по своим химическим свойствам) краситель, у которого окрашенный ион заряжен положительно, адсорбируется преимущественно на электроотрицательных (кислотного характера) адсорбентах, и наоборот. Подобные процессы называются полярной адсорбцией и обычно сопровождаются явлением обмена ионами ионного обмена) между адсорбентом и раствором — явле нием, называемым обменной адсорбцией. Так, метиленовая синяя — основной (по химическим свойствам) краситель, адсорбируется отрицательно заряженными гелями, в частности гелем кремневой кислоты. При этом, однако, на кремневую кислоту переходит лишь положительно заряженный ион красителя, а отрицательный ион (ион хлора) остается в растворе. Компенсация зарядов этих анионов достигается тем, что из кремневой кислоты переходит в раствор ион натрия, который в небольшом количестве почти всегда содержится в геле кремневой кислоты при обычных способах его приготовления. [c.372]

    Силы взаимодействия между полярными молекулами (ориентационный эффект). К полярным относятся вещества, молекулы которых имеют дипольный момент. У таких молекул на одном конце преобладает положительный заряд, на другом — отрицательный, в результате чего молекулы притягиваются друг к другу как разноименно заряженные тела. Полярными растворителями являются соединения, в молекуле которых содержатся электроотрицательные атомы кислорода, хлора, серы и др. (например, ке-тоны, хлорпроизводные и т. д.). Важная особенность ориентационного взаимодействия — зависимость его от температуры. Тепловое [c.69]

    Шеппард [21] показал, что частоты симметричных деформационных колебаний метильнь1х групп зависят от химической природы (электро-отрицательности) гетероатома, присоединенного к СНз-группе, но практически не зависят от массы и размеров этого атома. Частоты, обусловленные рассматриваемыми колебаниями, в случае соседства метильной группы с атомами Ы, О, Р, электроотрицательность которых больше трех, оказываются более высокими, чем в углеводородах (1380 см ). Наибольшая частота, около 1475 см , наблюдается для атома фтора. Соседство с атомом хлора, электроотрицательность которого равна трем, обусловливает поглощение около 1355 см т. е. несколько ниже, чем в углеводородах. [c.161]

    Для правильного отношения к электрохимическому учению особенно убедительны были случаи так называемой металепсии (Дюма, гл. 11). Хлор, соединяясь с водородом, дает очень прочное тело — хлористый водород, который, под влиянием гальванического тока, распадается на хлор и водород. так что на положительном полюсе является хлор, на отрицательном водород. Поэтому электрохимики заключали, что водород электроположительное, хлор электроотрицательное тело и своими противоположными электрическими зарядами они удерживаются друг около друга. В явлениях же металепсии оказалось, что хлор может становиться на место водорода (и обратно), не только не Изменяя первоначальной группировки остальных элементов, но и сохраняя главные химические свойства сложного тела. Так, при замене в уксусной кислоте водорода хлором, ее способность давать соли не изменяется. Заметим при этом, что объяснения причины химических явлений электричеством (еще и поныне признаваемое имеет тот недостаток, что одно, мало известное, объясняется другим настолько же неясным, как первое. Весьма поучительно заметить, что вместе с электрохимизмом возродилось и держится представление, объясняющее гальванический ток перенесением по проводникам химического действия, т,-е. здесь химизмом объясняется электрическое явление. Связь очевидно велика, но оба рода явлений пока надо признать самостоятельными и составляющими виды молекулярных атомныи) движений, природа которых поныне еще не иполнс постигнута. [c.362]

    Из данных табл. 6 (стр. 124) видно, что электроотрицательность хлора и иода меньше, а фтора бо/п.ше, чем электроотрнцателыгость азота. Отсюда следует, что п соединениях N I3 и NI3 степень окисленности азота равна —3, а в NF3 опа равна -НЗ, Поэтому фторид азота отличается по свойствам от нитридов хлора и иода. Например, при взаимодействии с водою N lj или NIj образуется аммиак, а а случае NFj получается оксид азота (П1)  [c.401]

    В простейших ковалентных соединениях значение положительной степени окисления элемента - соответствует числу оттянутых от атома связывающих электронных пар, а величина отрицательной степени окисления — числом притянутых электронных пар. Например, в молекуле H I хлор и водород одновалентны степень окисления более электроотрицательного хлора (3,0) принимается равной —1, а менее электроотрицательного водорода (2,1) +1. В молекулах аммиака H3N и трифторида азота NF, азот образует три связи, т. е. трехвалентен. В ooTBeT TBHii же с рг зличием в электроотрицательностях азота (3,0), водорода /2,1) и фтора (4,0) азоту в HgN приписывается отрицательная степень окисления —3, а в NFg — положительная степень окисления --1-3, [c.82]

    Из сказанного ясно, что условием образования водородной связи является высокая электроотрицательность атома, непосредственно связанного в молекуле с атомом водорода. Только при этом условии электронное облако атома водорода достаточно сильно смещается в сторону атома-партнера, а последний приобре тает высокий эффективный отрицательный заряд. Именно поэтому водородная связь характерна для соединений самых электроотри нательных элементов сильнее всего она проявляется у соединений фтора и кислорода, слабее — у соединений азота и еще слабее — у соединений хлора и серы. [c.155]

    Каждый ион, входящий в состав хлорида натрия, приобретает электронную конфигуращ1ю атома одного из благородных газов ион натрия имеет конфигурацию неона, Не, а хлорид-ион имеет конфигурацию аргона, Аг. Перенос электрона от натрия к хлору обусловлен тем, что хлор-более электроотрицательный элемент (электроотрицательность На 0,93, а хлора 3,16). Но что должно происходить в молекуле Н1, образованной элементами с приблизительно одинаковой электроотрицательностью (2,20 и 2,66 соответственно)  [c.466]

    Атом магния имеет низкую электроотрицательность, а атом хлора-высокую, поэтому запись электронной структуры Mg I2 должна отражать образование в этом соединении ионных связей. В Mg l2 происходит перенос с атома магния по одному электрону на каждый из двух атомов хлора. Правильно записанная структура должна включать заряды на атомах [c.471]

    В г.т. 12 мы обсуждали электронное строение НС1 п отмечали, что гетероядерные двухатомные молекулы полярны, тогда как гомоядерные дву.чатомные молекулы неполярны. Неполярная молекула имеет нулевой (или близкий к нулю) дипольный момент. Среди многоатомных молекул имеется немало таки.х, в которых отдельные связи полярны, хотя молекула в целом неполярная. В качестве примера приведем ССЦ. Строение молекулы lj. показано на рис. 13-28, а. Поскольку хлор-более электроотрицательный элемент, чем углерод, связывающие электронные пары смещаются в направлении к атомам хлора. В результате каждая связь С—С приобретает небольшой дипольный %юмент. Попарное векторное сложение диполей связей дает два равных по величине и обратных по направлению диполя фрагментов СС1,, как показано на рис, 13-28, б. Симметричная тетраэдрическая форма молекул ССЦ обусловливает ее нулевой дипольный момент таким образом, I4-неполярная молекула. [c.579]

    Примером полярной многоатомной молекулы является H3 I. Поскольку углеро,т и водород имеют приблизительно одинаковые электроотрицательности. вклад трех связей С—Н в суммарный диполь молекулы должен быть пренебрежимо мал. Разность электроотрицательностей углерода и хлора, наоборот, велика, и наличие сильно полярной связи С— i [c.579]

    Водородная связь проявляется тем сильнее, чем больше элект-роотрицательнвсть атома-партнера и чем меньше его размеры. Она характерна прежде всего для соединений фтора, а также кислорода, в меньшей степени азота, в еще меньшей степени для хлора и сс1)ы. Соответственно меняемся и эиергия водородной связи. Так, энергия водородной связи Н---Р (эту связь принято обозначать точками) составляет 40, связи Н---0 20, Н---Ы ж 8 кДж. Соседство электроотрицательных атомов может активировать образование водородной связи у атомов СН-групп (хотя электроотри-цательностн углерода и водорода почти одинаковы). Этим объясняется возникновение водородных связей Между молекулами в жидких ИСЫ, СРзН и т. д. [c.132]

    Типичными окислителями являются а) простые вещества, атомы которых обладают большой электроотрицательностью (элементы VIA и VIIA групп), из них наиболее активны фтор, а также кислород и хлор б) ионы с дефицитом электронов это простые катионы с высшей или большой степенью окисления, например РЬ+ , Fe+ , Т1+ , Се+ , и сложные анноны, в которых более электроположительный элемент имеет высшую пли значительную степень окисления, например (Сг+Ю4) - , ( ri 07) ", (М+Юз) , (Мп+Ю4) ,, (5+Ю4)2-, (С1-Юз)-, (С1+Ю4)-. (Bi+Юз)-. (РЬ+Юз)2-. ( i+ O)-. (Вг+Юз)-. [c.203]

    Величина К зависит от характера химической связи в молекуле диссоциирующего соединения. Так, увеличение К в ряду кислот СНаСООН — СНгСЮООН — СНСЬСООН — ССЬСООИ обусловлено оттягиванием электронов от группы ОН электроотрицательным атомом хлора. [c.249]

    Типичными ок)1слителямн являются а) простые вещества, атомы которых обладают большой электроотрицательностью (элементы VIA—VIIA групп) из них наиболее активны фтор, а также кислород и хлор б) ионы с дефицитом электронов простые катионы с высшей или большой [c.84]

    Чем больше К, тем значительнее диссоциация электролита. Так, увеличение К в ряду кислот СНзСООН — H2 I OOH — H I2 OOH — СОяСООН, обусловленное отталкиванием электронов от связи ОН электроотрицательным атомом хлора, означает вместе с тем и рост а в этом ряду. [c.178]

    Атом натрия содержит один слабо связанный электрон, а атом хлора, наоборот, не только очень прочно удерживает свои электроны, но и обладает довольно значительным сродством к электрону. Иначе говоря, электроотрицательность хлора много больше, чем натрия. Поэтому при взаимодействии между ними один электрон переходит от атома натрия к атому хлора, в результате чего образуются ионы Na+ и С1 , которые, обладая противоположным по знаку зарядом, могут притягиваться друг к другу и образовывать молекулу Na l. [c.58]

    Перейдем теперь к вопросу о водородной связи. В различных состояниях водородного атома такая способность к присоединению может быть свойственна ему не в одинаковой степени. Наиболее сильной она будет тогда, когда он в наиболее полной степени отдает свой электрон, т. е. прежде всего, когда он находится в состоянии положительного иона Н+, а также, когда он связан с атомом одного из наиболее э 7ектроотрицательных элементов — в первую очередь с атомами фтора и кислорода и в меньшей степени с атомами хлора и азота. Наоборот, в случае неполярной ил11 малополярной связи (с углеродом, кремнием или другими) и тем более в случае связи с менее электроотрицательными элементами— с металлами (гидриды металлов)—этой способности у атома водорода быть не может. [c.82]

    Кислотность поверхности в зависимости от птепени дезактивации обусловлена наличием центров Бренстеда (протонно-донорные ОН--группы) и Льюиса (электронно-акцепторные ионы АР+). При хлорировании происходит замена ОН--групп на ионы С1 , что увеличивает кислотность поверхности за счет смещения электронов от связи О- Н соседних групп к электроотрицательному иону хлора. С помощью термодесорбции аммиака в сочетании с ИК-спектроскопией можно обнаружить пять видов кислотных центров. [c.153]

    Молекулы большинства органических соединент не обладают значительной полярностью. Так, молекулы углеводородов вовсе неполярны, поскольку практически неполярны ковале.чтные связи между атомами углерода и водорода. Молекулы органических соединений, содержащих атомы элементов, более электроотрицательных, чем углерод, могут быть более или менее полярными, если только этому ие мешает симметричная структура молекул. Так, наиример, несмотря на полярность связей между атомами углерода, с одной стороны, и кислорода или хлора — с другой, молекулы диоксида и тетрахлорида углерода, вследствие симметричности их структуры, совершеирю неполярны. [c.137]


Смотреть страницы где упоминается термин Хлор электроотрицательность: [c.279]    [c.76]    [c.329]    [c.231]    [c.253]    [c.222]    [c.431]    [c.313]    [c.29]    [c.483]    [c.51]    [c.91]    [c.160]   
Принципы органического синтеза (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Электроотрицательность



© 2025 chem21.info Реклама на сайте