Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения с гидроксилом и it-электронной системой

    При образовании комплексов соединением II с металлами атом кислорода диссоциированного фенольного гидроксила выступает, как уже было отмечено, в роли координационного партнера. Предоставление атомом кислорода координационно связанному металлу пары электронов, непосредственно вовлеченной в сопряженную систему, приводит к изменению электронного состояния системы молекулы и соответственно к изменению спектра поглощения (см. рис. 58). Влияние координированного металла на я-электронную систему сопряжения молекулы, иллюстрируемое соответствующими спектрами, характеризует степень ионности (ковалентности) связи катиона с кислородом фенольного гидроксила [5,6]. Для комплексов соединения II это влияние возрастает в следующем ряду Ва < <" Са << Н < Мд < Ът по этому же ряду возрастает устойчивость комплексов (см. табл. 47), что объясняется повышением степени ковалентности связи. [c.194]


    Систематическое изучение протолитических равновесий в окислительно-восстановительных системах начинается работами Кларка с сотрудниками [22—24]. В этих работах рассмотрена сложная зависимость окислительного потенциала от протолитических процессов, протекающих в окислительно-восстановительных системах. Состояние вещества в раство-при протолитических равновесиях существенным образом зависит от pH раствора и от способности тех продуктов, которые образуют окислительно-восстановительную систему, присоединять или отщеплять ион водорода или гидроксил. Метод Кларка основан на изучении зависимости окислительного потенциала, измеренного по отношению к нормальному водородному (или каломельному) электроду, т. е. величины ф или ф" от pH раствора. Кривая названной зависимости состоит из линейных участков, соединенных друг с другом плавными изгибами. Анализ этой кривой позволяет по точкам пересечения линейных участков определять величины констант окисленной и восстановленной форм вещества. Какой из форм— окисленной Или восстановленной — соответствует та или иная константа диссоциации определяется по характеру изменения тангенса угла, наклона линейных участков. Тангенс угла наклона — величина кратная — (где п — число электронов, [c.47]

    Весьма многочисленную и интересную группу комплексонов ароматического ряда составляют лиганды, содержащие высокосопряженные системы связей. Определяющим критерием о строении Этих соединений можно судить о наличии хелатной группировки, содержащей по крайней мере один из способных к координации атомов — атом азота иминодиацетатной группы либо атом кислорода фенольного гидроксила, — сопряженных с конъюгированной системой молекулы. При этом процесс взаимодействия с определенными катионами сопровождается перераспределением плотности в узлах, ответственных за координацию. Изменение при комплексообразовании состояния электронной системы молекулы приводит в зависимости от характера высокосопряженных систем к сдвигу максимума поглощения в видимой части спектра либо изменению интенсивности люминесценции. Подобное свойство комплексонов рассматриваемого типа определяет возможность широкого их применения в качестве металлохромных и флуоресцентных комплексонометричес-ких индикаторов, а также высокочувствительных колориметрических и люминесцентных реагентов. [c.228]

    Системы, аналогичные оксидазам смешанных функций дрожжей, широко распространены в природе, а именно в клетках млекопитающих и растений. У многих микроорганизмов и высших животных система окисления состоит из нескольких ферментов - редуктазы, переносчиков электрона, цитохрома Р-450. В зависимости от происхождения цитохрома Р-450 алифатические, циклические и гетероароматические соединения гидроксили-руются, деалкилируются и дегалогенизируются или модифицируются с образованием эпоксидов, S- или N-оксидов. Благодаря низкой субстратной специфичности ферментная система, содержащая цитохром Р-450, способна окислять и таким образом переводить в водорастворимое состояние множество различных низкомолекулярных соединений, что способствует их удалению из организма. Отсюда большая роль цитохрома Р-450 в метаболизме лекарств, при детоксикации ядов, канцерогенезе, биосинтезе стероидов и конверсии субстратов. [c.319]


    Шестичленные гетероциклы с атомом кислорода — а-пиран и у-пиран — не относятся к ароматическим соединениям, так как в каждом из них имеется атом углерода в состоянии л/ -гибридизации и поэтому отсутствует единая сопряженная система р-электронов двойных связей и атома кислорода. Эти соединения представляют собой ненасыщенные циклические эфиры, обладающие высокой реакционной способностью, вследствие чего они неустойчивы, а а-пиран вообще в свободном виде неизвестен. Стабильными являются производные пиранов, в частноеги тетрагидропиран и его гидрокси-производные, относящиеся к классу моносахаридов (см. 15.1). [c.370]

    ЮТСЯ более стабильные изомеры [320]. К сожалению, полученные данные не имеют общего характера п их интерпретация, приведенная выше, является весьма упрощенной. В частности, стереохими-ческие результаты реакции восстановления а,р-ненасыщенных карбонильных соединений системой металл — донор протонов сильно зависят как от характера этой системы, так и от условий реакции. Так, восстановление циклогексилиденуксусной кислоты, изображенной на рис. 2-56, в соответствующую циклогексан-уксусную кислоту системой калий — изопропиловый спирт — жидкий аммиак приводит исключительно к соединению с кислотной боковой цепью в р-положении (экваториальном), если гидроксильная группа при С-4 занимает а-положение (аксиальное). Однако, если при С-4 находится р-гидроксил (экваториальный), образуется соединение с а-боковой цепью (аксиальной) [321]. Кроме того, в том случае, когда восстанавливают соединение с a-4-гидроксильной группой, содержание продукта с р-конфигу-рацией боковой цепи в продуктах реакции изменяется от 100% для системы калий — изопропиловый спирт — жидкий аммиак до соотношения 4 3 в пользу а-боковой цепи при переходе к системе литий — жидкий аммиак (в присутствии или в отсутствие изопропилового спирта) [321]. Более того, показано, что при восстаповлепии некоторыми системами образуется менее стабильный изомер. Так, ири восстановлении 7-метокси-5-метил-д1(1о) окталона-2 (рис. 2-57) системой литий — этиловый спирт — жидкий аммиак образуются только производные гракс-декали-па [322]. В данном случае вследствие диаксиального взаимодействия СНз-СНзО в траке-декалоновых соединениях соответствующие производные г кс-декалина должны быть более стабильными, и тем не менее последние не образуются. Предполагалось [322], что стереохимия восстановления в данном случае определяется требованием наличия перекрывания орбитали пары электронов образующегося карбаниона с л-орбнталями карбонильной группы. Для этого необходимо, чтобы орбиталь карбаниона была аксиальной, а не экваториальной. Последнее приводит к конечному продукту реакции с тракс-сочленением колец. Следует отметить, что упомянутое выше утверждение, согласно которому свободная пара электронов занимает аксиальное положение, не оспаривается, однако предполагается, что причиной этого является скорее перекрывание орбиталей, чем пространственные требования свободной пары электронов. Очевидно, что этот новый аргумент непосредственно неприменим к стереохимии карбанионов, в которых отсутствует перекрывание орбиталей свободной пары электронов и карбонильной двойной связи. [c.151]

    В которых один неспаренный электрон приходится на каждый атом металла. Предполагается, что это связано с димеризацией комплекса с образованием связи между двумя атомами металла. Уильямс [21 ] отметил, что ё-электроны и с1-орбитали элементов с небольшим числом (З-электронов, по-видимому, легко доступны для лигандов, что в случае соединений Мо(У) приводит к димеризации. Эту склонность к образованию димеров нужно учитывать при обнаружении по спектрам ЭПР низкоспинового состояния восстановленной ксантиноксидазы. Было высказано предположение, что интенсивность спектра ЭПР, соответствующая всего 37% полного содержания молибдена, объясняется существованием равновесия между парамагнитным мономером и диамагнитным димером. В модельных комплексах Мо(У) в водном растворе число неспаренных электронов, обнаруживаемых методом ЭПР, еще меньше (менее 1 %). Отсюда следует, что биологические системы способны стабилизировать мономерные комплексы Мо(У). Специфические эффекты стабилизации могут также регулировать баланс между состояниями окисления. Такая регуляция имеет существенное значение, если молибденсодержащие ферменты эффективно функционируют как электрон-транспортные реагенты, поскольку процессы переноса электрона между молекулами, протекающие с низкими энергиями активации, возможны только в случае подходящих соотношений между окислительно-восстановительными потенциалами компонентов. Данные, полученные Уильямсом и Митчеллом [18], показывают, каким образом достигается регуляция окислительно-восстановительных потенциалов в случае молибдена. Эти авторы обнаружили специфическую стабилизацию Мо(1У) цианид-ионами, повышение устойчивости Мо(У1) по сравнению с Мо(111) при наличии гидроксила в качестве лиганда и примерно одинаковую устойчивость Мо(1П) и Мо(У) в присутствии хлорида и тиоцианата. При нейтральных рн окислительно-восстановительные потенциалы пар Мо(У1)/Мо(У) и Мо(У)/Мо(1П) находятся в интервалах от —0,2 до —0,4 В и от —0,6 до —1,0 В соответственно. Таким образом, первая пара близка по своему окислительно-восстановительному потенциалу к флавиновьш системам (около 0,25 В), тогда как вторая пара имеет потенциал, выходящий за пределы обычных окислительно-восстановительных потенциалов биологических систем. Однако способность меркаптоуксусной кислоты ( около —0,30 В) восстанавливать Мо(У) до Мо(1П) показывает, каким образом окислительно-восстановительный потенциал молибденовой пары может быть смещен в область, в которой протекают биологические реакции, путем преимущественной стабилизации состояния с меньшей степенью окисления ([21], см. также гл. 15). [c.267]


    В табл. 17 приведены полученные результаты для разнообразных нитросоединений [2731. Введение нитрогруппы в 3-и 4-положения фенола понижает значения Jif этих соединений по сравнению с фенолом в системе I. Это может быть следствием увеличения кислотности фенольного гидроксила за счет электронного эффекта нитрогруппы или результатом взаимодействия между нитрогруппой и водородным атомом амидогруппы. [c.44]

    Практическое значение в химии и технике азокрасителей имеют комплексные соединения хрома, кобальта, никеля и меди. Ионы этих элементов, принадлежащих к переходным элементам первого длинного периода периодической системы, обладают незаполненными внутренними 3(1-, 45- и 4р-электрон-ными уровнями. Эти уровни (все или часть их) способны заполняться неподеленными парами электронов лигандов. В качестве последних могут быть атомы (например, азота азогруппы), молекулы (воды, аммиака, амина и пр.) или анионы (гидроксил, анион кислоты и т.д.). Лишь при координации с заряженным лигандом нейтрализуется соответствующий заряд иона, при комплексном присоединении же нейтральных молекул или групп к иону металла зарядность иона не изменяется. [c.77]


Смотреть страницы где упоминается термин Соединения с гидроксилом и it-электронной системой: [c.361]    [c.180]    [c.102]    [c.102]    [c.157]    [c.60]    [c.227]    [c.227]    [c.243]   
Смотреть главы в:

Успехи органической химии Том 5 -> Соединения с гидроксилом и it-электронной системой




ПОИСК





Смотрите так же термины и статьи:

Гидроксам вая

Гидрокси

Гидроксил

Гидроксо

Система соединений

электронная система



© 2025 chem21.info Реклама на сайте