Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Закон положительное

    Внешне сходный с предыдущим результат получается и в том случае (правда, едва ли осуществимом иа практике), когда разветвление цепей следует квадратичному закону (положительное взаимодействие цепей), а обрыв цепей пропорционален п. В этом случае имеем = Ь П, и уравнение (36.19) принимает вид [c.509]

    В общем случае положительные теплоты смешения обусловливают повышенные упругости пара по сравнению с теми, которые должны быть в соответствии с этим законом (положительные отклонения), в то время как при отрицательных теплотах смешения получаются более низкие упругости пара (отрицательные отклонения). Что это действительно так, можно видеть из уравнения (6), если принять во внимание выражение для энтропии из уравнения (5) [c.308]


    По условию электронейтральности можно написать, что 7м = —< ь. Для того чтобы найти величину <71, как функцию потенциала, необходимо сделать определенные предположения о законе ее изменения с расстоянием от электрода. Гуи и Чапман считают, что ионы можно рассматривать как материальные точки, не имеющие собственного объема, но обладающие определенным зарядом, и что их распределение в поле заряда, равномерно размазанного по поверхности электрода, подчиняется формуле Больцмана (рис. 12.2). Величина /ь определяется при этом суммированием всех избыточных зарядов ионов (положительных при отрицательно заряженной поверхности металла и отрицательных при ее положительном заряде), находящихся в столбе жидкости, перпендикулярном поверхности электрода и имеющем сечение 1 см . [c.264]

    Второй закон термодинамики требует только того, чтобы сумма всех членов типа А.г была положительна. Поэтому возможно сопряжение реакций, когда отдельные отрицательные члены компенсируются другими, положительными. Это явление имеет большое значение в биологических процессах. [c.60]

    К первому типу относятся растворы так называемого нормального вида, у которых равновесные изотермические и изобарные кривые кипения и конденсаций, построенные по экспериментальным данным, во всем интервале мольных составов изменяются монотонно и не имеют экстремальных точек. Давление пара раствора и его температура закипания при любой концентрации являются промежуточными величинами между давлениями паров и точками кипения чистых компонентов системы, хотя и отклоняются от значений, рассчитанных по закону Рауля. Смотря ро тому, в сторону больших или меньших значений наблюдаются отклонения от линейного закона, говорят о положительных или. отрицательных отступлениях раствора от идеальности. [c.36]

    На рис. 1.10 представлены опытные данные, полученные путем измерения при постоянной температуре 50 °С парциальных давлений компонентов системы четыреххлористый углерод — бензол, проявляющей положительные отклонения от закона линейной зависимости (показан пунктиром). Однако парциальные давления могут и не достигать значений, рассчитанных по закону [c.36]

    Очевидно, для растворов, проявляющих положительные отклонения от закона Рауля (см. рис. 1.6), уравнение (1.70), определяющее коэффициент активности, сохраняет тот же общий вид, но сравнение величин с единицей дает картину, обратную рассмотренной выше. Таким образом, численное значение коэффициента активности определяется выбором стандартного состояния.  [c.44]


    Наличие экстремальных (максимальных или минимальных) точек на изобарных кривых начала кипения и конденсации диаграмм состояния 1 — X, у вызывается большими отрицательными или положительными отклонениями раствора от закона Рауля и близостью точек кипения чистых компонентов системы. [c.323]

    Двухкомпонентные растворы реальных веществ, отклоняющиеся в своем поведении от идеального и относящиеся к первому виду растворов, т. е. к растворам компонентов, смешивающихся во всех отношениях, различаются между собой по характеру их отклонения, положительному или отрицательному, от идеального линейного закона, выражающего суммарную упругость пара раствора в функции мольного состава жидкой фазы. [c.11]

    Положительные отклонения от законов Отрицательные отклонения от законов [c.12]

    В зависимости от характера уклонений летучих свойств реального раствора от закона идеальных растворов получаются или положительные, т. е. с минимумом точки кипения, или отрицательные азеотропы, т. е. постоянно кипящие смеси с максимумом точки кипения. Следует отметить, что растворов, проявляющих положительные отклонения от закона идеальных смесей, значительно больше, чем растворов с отрицательными отклонениями, встречающихся сравнительно редко. [c.33]

    Если два инертных плоских металлических электрода поместить параллельно друг другу в раствор, который содержит электролит, и приложить к ним небольшой электрический потенциал Е, то между ними возникнет ток /, уменьшающийся во времени. Этот ток будет создаваться движением положительных ионов к катоду и отрицательных ионов к аноду. Вначале он будет подчиняться закону Ома 1=Е1Е, где сопротивление раствора i обратно пропорционально подвижности ионов. Однако по прошествии некоторого времени накопление ионов противоположного заряда вокруг каждого из электродов повлечет за собой образование в растворе некоторого потенциала противоположного знака — потенциала поляризации. Потенциал поляри- [c.552]

    Установлено, что отклонения от закона Рауля во всех системах, образованных углеводородами с одинаковым числом углеродных атомов Пс, являются положительными, причем зависимость коэффициентов активности компонентов и 72 от состава, как правило, имеет характер близкий к симметричному. Отклонения от закона Рауля тем больше, чем больше компоненты различаются по числу л-связей Пц, а-ацетиленовых атомов водорода пн и циклов Пц в молекуле. Определенное влияние, хотя и меньшее, чем указанные факторы, оказывает различие в пространственной структуре молекул. Для корреляции и предсказания фазового равновесия в углеводородных смесях предлагается использовать [c.665]

    Примерами растворов с положительными отклонениями от законов Рауля могут служить растворы  [c.191]

    Величины общего давления р в этих системах изменяются монотонно с изменением величины X. Если отклонения от закона идеальных растворов велики, то кривая общего давления пара проходит через максимум или минимум. Чем ближе между собой давления насыщенного пара чистых жидкостей, тем меньшие положительные или отрицательные отклонения парциальных давлений от закона Рауля вызывают появление экстремума на кривой общего давления. [c.192]

    Положительные и отрицательные отклонения реальных растворов от закона Рауля обусловлены разными факторами. Если разнородные молекулы в растворе взаимно притягиваются с меньшей силой, чем однородные, то это облегчит переход молекул из жидкой фазы в газовую (по сравнению с чистыми жидкостями) и будут наблюдаться положительные отклонения от закона Рауля. Усиление взаимного притяжения разнородных молекул в растворе (сольватация, образование водородной связи, образование химического соединения) затрудняет переход молекул в газовую фазу и поэтому будут наблюдаться отрицательные отклонения от закона Рауля. [c.192]

    В первом случае теплота смешения чистых компонентов будет положительной. Во втором случае, при особых взаимодействиях разнородных молекул, указанных выше, теплота смешения компонентов будет отрицательной. Таким образом, знак отклонения от закона Рауля и знак теплоты смешения должны в общем случае совпадать. Такое совпадение, как правило, наблюдается. [c.193]

    Изменение знака отклонения от закона Рауля—Генри наблюдается, например, в растворе пиридин—аода при 79 °С (рис. VI, 6). В интервале концентраций пиридина (1—л )=0- -0,59 наблюдаются положительные, а при больших концентрациях—отрицательные отклонения от закона Рауля. Очевидно, при концентрации пиридина (1—х)=0,59 парциальное давление пиридина имеет значение, соответствующее идеальному раствору. По-видимому, значение парциального давления воды при х=0,96 также соответствует идеальному раствору. [c.193]

    Значительные положительные или отрицательные отклонения растворов от закона идеальных растворов приводят, как указывалось выше (стр. 192), к появлению максимума (рис. VI, И) или [c.200]

    Если положительные отклонения парциальных давлений пара раствора от закона Рауля велики и превосходят некоторую критическую величину, то возникает новое явление—расслаивание раствора на две несмешивающиеся жидкие фазы разного состава [c.204]


    Метод активности в термодинамике является формальным приемом и заключается, как видно из изложенного, во введении новой функции состояния, промежуточной между химическим потенциалом и концентрацией. Он ничего не дает для понимания причин, вызывающих то или иное отклонение данного раствора от закона идеальных растворов. Однако этот метод обладает существенными положительными свойствами—упрощает формальную математическую разработку термодинамики растворов. [c.208]

    Эти растворы обнаруживают положительное отклонение от закона Рауля. Давление пара чистого брома Р2=0.280 атм при 25°С, [c.213]

    Таким образом, I2 в воде и растворы СО2 во многих растворителях обнаруживают большие положительные отложения от закона идеальных растворов, [c.225]

    Высаливающее влияние отдельных ионов растет с их зарядом и уменьшается с увеличением радиуса. Оно объясняется в основном тем, что ионы притягивают молекулы воды и не притягивают неполярные и слабо поляризуемые молекулы малорастворимых газов, в результате чего проявляется эффект высаливания молекул газа из раствора, увеличивается летучесть растворенного газа, т. е. растет положительное отклонение от закона Рауля и падает растворимость. [c.228]

    Легко видеть, что, как и для газов, положительные отклонения от закона Рауля—Генри вызывают уменьшение растворимости твердого вещества, а отрицательные отклонения—увеличение ее. Общие же закономерности ограничиваются качественными обобщениями, охватывающими лишь отдельные классы растворов. [c.232]

    Лишь для неполярных веществ (главным образом—органических), растворы которых обнаруживают небольшие положительные отклонения от закона Рауля—Генри, удается построить полуколичественную статистическую теорию растворимости, согласно которой основным фактором, определяющим растворимость твердого тела в различных жидких растворителях, является разность квадратных корней внутренних давлений жидких компонентов. С ростом этой разности растворимость уменьшается (см. стр. 252). [c.232]

    Как показывает молекулярно-статистический анализ, закон Рауля может соблюдаться при любых концентра- сг> циях и при условии равенства нулю теплоты смешения жидких компонентов только в тех случаях, когда мольные объемы компонентов близки между собой. Увеличение различия между мольными объемами приводит к отрицательным отклонениям от закона Рауля, т, е, к положительным избыточным энтропиям смешения [см. уравнения (VH, 55) и (УП, 56)], [c.253]

    Концентрация г - электронов (компенсированная положительными зарядами ядер) внутри звезд достигает большой величины (для звезд типа О и К величина ге- 5,10 см ). В этом случае концентрация г пар (е - -е+), возникающих из излучения, должна при равновесии удовлетворять закону действия масс  [c.345]

    При растворении в воде органических веществ, молекулы которых имеют неполярную часть—углеводородный радикал и полярную часть—группу ОН (спирты), СООН (кислоты), NHj (амн-ны) и т. п. (т. е. веществ, дающих водные растворы с положительными отклонениями от закона Рауля), взаимодействие между молекулами воды в объеме раствора больше взаимодействий между молекулами воды и молекулами (в целом) этих веществ, поэтому эти вещества будут преимущественно выталкиваться из объема раствора на поверхность, т. е. их адсорбция Г2>0. Вследствие накопления на поверхности этих веществ, молекулярное взаимодействие в поверхностном слое уменьшается и поверхностное натяжение о с ростом концентрации падает. [c.471]

    Б зависимости от природы растворяющегося пара и растворителя могут быть растворы как с положительными, так и с отрицательными отклонениями от закона Рауля (см. стр. 191). Уравнение этих кривых имеет вид  [c.592]

    По закону Кулона потенциал фг, т. е. энергия перемещения единичного положительного заряда в точку г из бесконечности, равен  [c.404]

    Электрокапиллярные свойства граиицы ртуть — раствор электролита можно объяснить, если допустить, что в отсутствие внешней э.д.с. ртуть при потенциале оказывается заряженной положительно по отношению к раствору (рис. 11.3, а). Избыточный положительный заряд ртути связан, вероятнее всего, с ионами ртути, находящимся у ее поверхности (со стороны металла). Система в целом, так же как и входящая в нее поверхностная фаза, должны подчиняться закону электронейтральности. Поэтому со стороны раствора у границы раздела будет избыток отрицательных ионов, компенсирующий положительные ионы ртути, находящиеся на металле. Присутствие одноименно (положительно) заряженных ионов ртути на поверхности металла неизбежно приводит к появлению отталкивающих сил, и поверхностное натяжение на границе ртуть — раствор не может быть высоким на рис. П.З оно отвечает некоторой величине оь [c.238]

    Для этой цели подходят металлы, ионизация и разряд ионов которых происходит с низкой поляризацией (обычно серебро или медь). Напряжение на хемотроне в процессе переноса сохраняется поэтому низким до тех пор, пока на первом электроде остается металл М. Когда весь металл М окажется перенесенным с первого электрода на второй, на металле — основе электрода I должен начаться другой процесс, идущий при более положительном потенциале, а потенциал электрода И смещается в отрицательную сторону. Напряжение на хемотроне резко возрастает, что указывает на конец интегрирования. При перемене полярности процесс накопления информаши может быть продолжен. Так как количестао перенесенного металла М известно, а анодный и катодный процессы протекают со 100%-ным выходом по току, то по закону Фарадея можно определить количество прошедшего электричества. При введении в хемотрон третьего электрода появляется возможность промежуточного считывания величины интеграла. [c.386]

    На фиг. 8 представлены кривые парциальных давлений одного из компонентов бинарного неидеального раствора в функции мольного состава жидкой фазы для различных положительных отклонений от закона Рауля. При некоторых определенных значениях величин отклонений от свойств идеального раствора и, в частности, для систем, компоненты которых имеют близкие температуры кипения, кривая общего давления паров системы может иметь экстремальную точку. В этом случае раствор, состав которого отвечает максимуму или минимуму суммарной упругости паров, называется азеотропи-ческим раствором и характеризуется тем, что жидкость кипит при постоянной температуре и находится в равновесии с паром одного и того же с нею состава [7]. [c.17]

    На рис. 1.11, (L к ривые (1) относятся к случаю положительных отклоиеиий от закона Рауля, а (1 ) — отрицательных. [c.45]

    Типичные кривые распределения давления в различные моменты времени в неустановившемся прямолинейно-параллельном потоке упругой жидкости в галерее, пущенной в эксплуатацию с постоянным забойным давлением = onst, приведены на рис. 5.1. Найдем дебит галереи Q. Будем считать положительным дебит, отбираемый из галереи (х = 0), когда поток движется против оси л и dpjdx > 0. Согласно закону Дарси [c.142]

    Оценку эффективности различных растворителей для экстракционной перегонки можно произвести различнымт способами. Предварительный отбор может быть выполнен путем измерения температур кипения смесей углеводородов и растворителя. Хороший растворитель должен обладать значительно более низкой экспериментально измеренной температурой кипения смеси, чем температура, рассчитанная на основе линейной зависимости между составом и температурой кипения. Это иллюстрируется графиком (рис. 5), выражающим зависимость температуры кипения смеси метил-циклогексана с анилином от состава [11]. Экспериментальная кривая, выражающая зависимость температуры кипения от состава смеси, расположена значительно ниже пунктирной линии, соответствующей линейной зависимости между температурой кипения и составом. Это показывает, что образуются неидеальные растворы, для которых отклонения от закона Рауля имеют положительное значение. Экспериментальные данные по равновесию пар—жидкость показали, что в качестве растворителей для [c.100]

    Различие между положительными и отрицательными процессами не имеет 1Чачеь1ня с точки зрения первого закона термодинамики. [c.78]

    Так как раМдс для устойчивых систем всегда положительно (с ростом концентрации X второго компонента всегда растет его парциальное давление рг), то предыдущее равенство может соблюдаться лишь при условии у=х. Следовательно, йр/(1х=0 при условии, если у=х, что доказывает второй закон Коновалова. [c.202]

    Уравнение (121) показывает, что удельный удерживаемый объем уменьшается с ростом молекулярного веса неподвижной жидкости М и с ростом давления пара Рд чистого жидкого компонента. При данном Ро (т. е. для данного компонента) и при данной температуре Т колонки для увеличения удерживаемого объема надо выбрать растворитель, в котором данный компонент растворяется, давая большие отрицательные отклонения от закона Рауля (т. е. 7о<1)> и, наоборот, для уменьшения значения (газ-жидкость) при ТОМ жб Ро И при ТОЙ жс темперзтуре надо выбрать растворитель, в котором данный компонент растворяется, давая большие положительные отклонения от закона Рауля. [c.594]


Смотреть страницы где упоминается термин Закон положительное: [c.46]    [c.96]    [c.480]    [c.17]    [c.434]    [c.323]    [c.205]    [c.224]    [c.250]    [c.253]   
Физическая и коллоидная химия (1988) -- [ c.78 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкие смеси с положительным и отрицательным отклонением от закона Руля

Положительные и отрицательные отклонения от закона Рауля

Растворы с положительными и отрицательными отклонениями от закона Рауля

Рауля закон положительные

Рауля закон положительные отклонения

Реальные растворы. Положительные и отрицательные отклонения от закона Рауля



© 2025 chem21.info Реклама на сайте