Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перспективные методы термической переработки ТГИ

    Перспективным в практическом отношении является метод термической переработки пылевидного топлива в потоке в реакторе с комбинированным подводом тепла в поток перерабатываемого топлива. [c.333]

    Дефицит спекающегося угля с низким содержанием серы — основная проблема коксохимической промышленности Украины. Поэтому изучение поведения сернистых углей в различных процессах пиролиза является важнейшей задачей современной углехимии. Одним из наиболее перспективных и высокоинформативных методов термической переработки твердого топлива является полукоксование, поскольку протекающие на стадии полукоксования превращения лежат в основе большинства других процессов промышленной переработки ТГИ. [c.234]


    В книге описаны физические и химические свойства различных фенолов, приводятся методы анализа, тенденции использования и структура потребления фенолов. Подробно рассмотрены способы получения фенолов из продуктов термической переработки топлив и синтетическим путем. Проанализированы перспективные методы производства фенолов и дана их технико-экономическая оценка. Рассмотрен состав фенол-содержащих сточных вод и методы их обезвреживания. Особое внимание уделено технологии производства синтетических крезолов и ксиленолов. [c.2]

    Вторую группу твердых топлив, переработка которых методом термического растворения перспективна, составляют молодые гумусовые образования — торф и землистые бурые угли. Эти топлива обладают сно- [c.269]

    Показана перспективность разработки новых эффективных методов производства высококалорийного газа путем термической переработки пылевидного топлива в потоке при больших скоростях нагрева частиц топлива, в том числе и методов, обеспечивающих направленное протекание процесса пиролиза. [c.340]

    Не умаляя большого практического значения способов получения молекулярного водорода методом конверсии водяным паром и двуокисью углерода и мономолекулярной дегидрогенизацией на активных катализаторах, следует отметить, что способ, связанный с получением водорода в результате полимолекулярных превращений углеводородов в настоящее время представляется все более и более перспективным. Это связано с тем, что водород получают здесь наряду с другими целевыми продуктами, в том числе с такими продуктами крупнотоннажного производства, как термическая сажа, пирографит и др., вместе с ароматическими углеводородами, ацетиленом и Т. д. Основным сырьем для получения водорода по этому способу может служить метан, являющийся главным компонентом природного газа, а также другие газообразные, жидкие и твердые парафиновые углеводороды, входящие в состав нефтей, т. е. все то же природное сырье, проблема рациональной переработки которого еще не решена полностью. Поэтому последнее обстоятельство делает любые работы, связанные с исследованием полимолекулярной дегидрогенизации углеводородов в ходе их поликонденсации при кок-сообразовании, весьма актуальными. [c.164]

    Изопентены — 2-метилбутен-1, 2-метилбутеп-2, З-метилбутен-1 — являются важнейшим сырьем для получения изопрена. Многочисленные исследования [53] показали, что метод дегидрогенизации изопентенов до изопрена (725) является наиболее дешевым и перспективным. Одно из преимуществ этого метода — наличие большого запаса дешевого сырья, в отличие от других методов, которые в качестве сырья применяют ацетон и ацетилен или изобутилен и формальдегид. Метод дегидрогенизации основан на применении в качестве сырья изопентана, выделенного из газового бензина и изопентанов, полученных в процессах термокаталитической переработки средних и тяжелых парафиновых углеводородов (термический или каталитический крекинг), или в процессе каталитической дегидрогенизации фракции С5, выделенной из газового бензина. [c.496]


    Наличие в природных фосфатах минералов, потребляющих большое количество дефицитной серной кислоты при кислотных методах переработки, необходимость обогащения фосфатов и апатитов, используемых в качестве удобрений, заставляют более широко исследовать термические методы переработки природных фосфатов. Одним из наиболее перспективных удобрений являются плавленые фосфаты, получаемые путем плавления природных фосфатов с флюсами. [c.58]

    В настоящее время наметились некоторые перспективные направления в химической переработке угля, кроме ставших традиционными методов коксования, полукоксования и других способов термической обработки угля, которые тоже все время совершенствуются. [c.187]

    Одним из наиболее перспективных способов подземной термической переработки горючих сланцев является модифицированный метод. Сущность метода заключается в комбинировании шахтной разработки (таким способом добывается 20-40 % сланца) и разрушении оставшейся части при помощи взрывчатых веществ с целью создания подземной реторты для термической переработю сланца. [c.465]

    В некоторых областях используются некондиционные сорта (отходы) БК или продукты его глубоких химических превращений, одновременно являющиеся эффективными методами вторичной переработки полимера. Например, при селективном окислительном расщеплении БК по двойным связям с последующей термической (химической) обработкой продуктов распада получены насыщенные олигоизобутилены узкого фракционного состава с концевыми альдегидными, кетонными, карбоксильными и другими группами [284, 286]. Благодаря насыщенному характеру цепи они могут служить основой высокоэффективных смазочных масел, устойчивых к термической, термоокислительной и механической деструкции Продукты дальнейших превращений олигоизобутиленов по концевым группам зарекомендовали себя перспективными многофункциональными присадками к смазочным маслам (загущающими, антиокислительными, противозадирными, противоиз-носными и т.д.), придающими им высокие эксплуатационные показатели [291-, 292]. Хорошие адгезионные свойства и совместимость с каучука позволяют применять функциональные олигоизобутилены в резиновых композициях (с бутадиен-нитрильным, хлоропреновьпи каучуками) йля улучшения клейкости, морозостойкости, химической стойкости и стабильности к озонному старению [286, 293]. [c.177]

    Из перспективных методов извлечения серебра следует отметить гидролитическое расщепление желатины под действием биоферментов [70]. По своей молекулярной структуре желатина — продукт переработки белкового вещества коллагена, молекулы которого при длительной термической обработке распа- [c.144]

    Развитие этих процессов происходило и происходит под влиянием соответствующих требований со стороны моторной техники. При высоком уровне потребления авиационных и автомобильных бензинов и незначительном потреблении дизельных топлив в 1940—1950-х годах в широком масштабе в США, СССР и других развитых странах был реализован каталитический крекинг средних дистиллятов (керосино-газойлевой фракции атмосферной перегонки нефти), обеспечивающий большой выход бензиновых компонентов с достаточно высоким октановым числом. Для повышения октановых чисел бензинов получили распространение процессы полимеризации, алкили-пования, а также термического риформинга, который был заменен затем на более эффективный процесс каталитического риформинга. По мере дизели-зации моторного парка и перехода авиационной техники на реактивные двигатели возросла потребность в средних дистиллятах — авиационном керосине и дизельном топливе, и процесс каталитического крекинга с конца 1950-х — начала 1960-х годов был переориентирован на переработку тяжелого сырья — вакуумного газойля. В 1960-х годах в схемы НПЗ ряда зарубежных стран, прежде всего США, стал включаться процесс гидрокрекинга под давлением 15 МПа. Этот процесс обеспечивал наибольшую гибкость в регулировании выхода бензина, керосина, дизельного топлива при переработке тяжелого дистиллятного, а в ряде случаев — и остаточного сырья [121. По мере утяжеления сырья каталитического крекинга — переработки вакуумных газойлей с концом кипения 500—560 °С — возникла проблема как получения кондиционных котельных топлив из тяжелых вакуумных остатков, так и дальнейшей их переработки с целью увеличения выработки моторных топлив. Для переработки гудронов в схемах современных НПЗ получили развитие термические процессы (висбрекинг, замедленное коксование, коксование в псевдоожиженном слое — флюидкокинг — и его модификация с газификацией получаемого пылевидного кокса — флексико-кинг, сочетание процессов висбрекинга с термическим крекингом и др.), гидрогенизационные процессы (гидрокрекинг, гидрообессеривание), которые в ряде случаев сочетают со стадией предварительной подготовки сырья методами сольволиза (деасфальтизации) и деметаллизации. Перспективными процессами, частично реализованными в промышленности или находящимися в опытно-промышленной проверке, являются процессы гидровисбрекинга, [c.48]


    В иоследние два - три десятилетия в мире возник интерес к процессу диссоциации сероводорода, позволяющему получать наряду с серой и водород. При производстве 1 т серы методом диссоциации сероводорода образуется 690 м водорода стоимостью 62 дол. США в мировых ценах (в 1991 г. стоимость 1000 нм водорода составляла 70 дол. США). Уже такая оценка показывает перспективность переработки сероводорода методом разложения. В литературе представлен широкий спектр методов разложения сероводорода, среди которых такие, как термические, радиационно-химические, электрохимические, фотохимические и илазмохимические. [c.451]

    В монографии освещены источники образования и. свойства крупнотоннажных сульЛатсодержа-щих отходов. Обобщены методы вторичного использования серосодержащих ресурсов. Рассмотрены термодинамика и особенности протекания реакций при термическом разложении серосодержащих соединений. Дана математическая модель статики процесса разложения отработанных кислот. Показана перспективность совместной перерйбот-ки комплекса серосодержащих материалов с выпуском широкой номенклатуры продукций.Сформулированы принципы организации специализированных производств для переработки вторичных ресурсов. Освещены экологические аспекты сернокислотной переработки сырья и утилизации отходов. [c.2]

    Японская фирма Sumitomo Metals с 1978 г. начала разрабатывать процесс газификации в расплаве железа [37]. С 1982 г. проводятся испытания пилотной установки производительностью по углю 60 т/с, по газу — 5—6 тыс. м /ч. Уголь с кислородом и паром подается в расплав железа с высокой скоростью, газификация протекает очень быстро с образованием высококалорийного газа (И МДж/мЗ), содержащего 59—65% СО, 26—33% Н2, 3—6% СО2, свободного от метана, смолистых соединений и очень слабо загрязненного серой (HaS + OS). В процессе можно использовать уголь различных типов газогенератор легко масштабируется шлак выводится непрерывно добавление извести позволяет удалять серу в виде aS [38] процесс протекает при атмосферном давлении. Авторы считают, что основные реакции углерода с кислородом и воды с СО2 протекают за счет углерода, включенного в состав железа. Степень конверсии углерода превышает 98%, термический КПД — 75—80%. Простота конструкции установки в сочетании с высокими технико-экономическими показателями процесса, а также возможностью сочетать газификацию с переработкой металлических руд и металлолома указывают на перспективность этого направления. В 1985 г. в Швеции начато строительство фирмами Японии и ФРГ пилотной установки мощностью 240 т/с по углю и 480 тыс. м /с по газу. Полагают, что по энергетическому потенциалу газ, получаемый таким методом, равноценен нефти [39]. [c.251]

    Постоянно возрастающие потребности в газогенераторных и моторных топливах, бензине-сырце и средних дистиллятах приводят к необходимости деструктивной переработки высокомолекулярных нефтяных фракций и остатков от перегонки. Термический крекинг представляет собой процесс разложения нефтепродуктов под действием высоких температур (выше 400°С) с целью получения низкокипящих углеводородов-бензинов. Перспективным является каталитический метод гидрокрегинга, при котором под действием водорода происходит одновременно гидрорафинация, так что отпадает необходимость в дополнительной очистке. Принцип метода аналогичен классическому гидрированию угля по Бергиусу. На современных установках ежегодно перерабатывается 300- 600 тыс. т нефтепродуктов. [c.35]

    Термическое разложение углеводородов является основным методом получения низших олефиновых углеводородов. Жидкие углеводородные фракции с невысокими моторными свойствами — газовые бензины, фракции газовых конденсатов, низкооктановые беизино-лигроиновые фракции прямой гонки представляют собой перспективные виды сырья для переработки их в низкомолекулярные олефины — этилен, пропилен, бу-тилспы. [c.12]


Смотреть страницы где упоминается термин Перспективные методы термической переработки ТГИ: [c.209]    [c.346]    [c.15]    [c.130]    [c.376]    [c.161]    [c.181]    [c.4]   
Смотреть главы в:

Теоретические основы технологии горючих ископаемых -> Перспективные методы термической переработки ТГИ




ПОИСК





Смотрите так же термины и статьи:

методы переработки



© 2025 chem21.info Реклама на сайте