Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клонирование в дрожжах

    Поскольку с помощью методов клонирования у дрожжей были выделены все элементы, необходимые для репликации и наследования хромосом — ориджины репликации, теломеры и центромеры,— то оказалось возможным создать искусственную хромосому, состоящую из соединенных в.месте двух теломер, центро.меры, последовательности ARS и ДНК наполнителя , роль которой может играть ДНК с любой последовательностью, например ДНК фага лямбда. Оказалось, что искусственная хромосома поддерживается в дрожжах, причем стабильность ее наследования не намного ниже, чем стабильность собственных дрожжевых хро.мосом. [c.72]


    ДНК области начала репликации может быть выделена благодаря ее способности поддерживать репликацию любой последовательности ДНК, к которой она присоединена. Принцип такого подхода состоит в клонировании ДНК из области, несущей точку начала репликации, в такой молекуле ДНК, которая имеет подходящие генетические маркеры, но утратила точку начала. Подобная реконструкция приведет к образованию плазмиды, способной автономно реплицироваться лишь в том случае, если ДНК из области точки начала репликации будет содержать все необходимые для функционирования последовательности. (Такой подход был использован для идентификации центромерной или теломерной ДНК у дрожжей по их влиянию на выживаемость плазмиды гл. 28.) [c.398]

    У дрожжей точки начала репликации не относятся к семейству повторяющихся последовательностей. Вполне возможно, что много разных последовательностей способны обеспечивать функцию точки начала репликации. Уменьшая размер клонированных фрагментов, можно определить минимальную последовательность, необходимую для обеспечения ars-функции. Единственная область гомологии ars-элементов представлена канонической последовательностью из 11 п. н. (в каждом элементе может быть не больше трех замен). Обычно эти последовательности находятся в окружении А—Т-богатой ДНК. [c.404]

    Развитие методов генной инженерии привело к разработке системы трансформации для дрожжей, что способствовало более глубокому изучению у них механизма рекомбинации. Гибридные плазмиды, содержащие участки дрожжевой ДНК с известными маркерами, клонированные на векторе Е. соИ, могут быть введены в клетки дрожжей. При этом может происходить встраивание плазмидной ДНК в хозяйскую хромосому за счет рекомбинации между гомологичными последовательностями хромосомы и участка дрожжевой ДНК, входящего в состав плазмиды. При использовании плазмидной ДНК в замкнутой кольцевой форме удается с заметной частотой отобрать трансформированные дрожжевые клетки. В то же время введение двухцепочечного разрыва в дрожжевую [c.150]

    Недавно была предложена модификация гель-электрофореза в агарозном геле, названная электрофорез в пульсирующем электрическом поле или пульс-электрофорез. С ее помощью удается разделять очень большие, можно сказать громадные молекулы ДНК. Обычный гель-электрофорез не позволяет разделить такие молекулы ввиду постоянства электрического поля, которое придает молекулам змеевидную конфигурацию. Обладающие такой конфигурацией молекулы движутся в гелях с постоянной скоростью вне зависимости от длины молекул. Если же направление электрического поля будет часто меняться, скорость движения молекул будет определяться их способностью переориентироваться согласно этому изменению. Такой процесс у больших молекул занимает значительно больше времени, вследствие чего они будут отставать. На гелях после пульс-электрофореза целые хромосомы бактерий или дрожжей выявляются в виде отдельных полос (рис. 4-64, В), и поэтому можно легко определить хромосомные перестройки. Более того, используя гибридизацию молекул клонированной ДНК данного геля для поиска комплементарных последовательностей в геле, удалось картировать множество генов у дрожжей (см. разд. 4.6.8). [c.233]


    Известно, что в мейозе и в митозе хромосомы упорядоченно расходятся по дочерним клеткам с помощью аппарата веретена, микротрубочки которого обеспечивают растягивание дочерних хромосом или гомологов к разным полюсам. Микротрубочки веретена прикрепляются к специальному участку хромосомы — кинетохору. Это белковый комплекс, который собирается на специализированной последовательности хромосомной Ц.НК — центромере. Молекулярные основы функционирования кинетохора пока не ясны. Методы молекулярного клонирования позволили выделить центромеры хромосом дрожжей. Вставление этих последовательностей в способные реплицироваться молекулы ДНК обеспечивает правильную сегрегацию последних в митозе у дрожжей. В случае дрожжей-сахаромицетов центромеры оказались сравнительно короткими (100—200 п. н.) сегментами ДНК. Центромеры делящихся дрожжей значительно больше (несколько тысяч п. н.) и, видимо, напоминают своим строением центромеры высших эукариот. Механизм упорядоченной сегрегации хромосом эукариот станет понятен, когда выяснится, как связанные с центромерой кинетохорные белки взаимодействуют с аппаратом веретена. [c.72]

    Чрезвычайно высокая степень консервативности во взаимодействиях белков транскрипции с гетераюгичными промоторами и энхансерами, а также белков транскрипции разного происхождения друг с другом была показана следующими экспериментами. Добивались экспрессии клонированного гена дрожжей в клетках млекопитающих и следили за функцией продукта этого гена — белка GAL4 (рис. 111, а). Оказалось, что белок QAL4, образующийся в клетках [c.206]

    К важнейшим отраслям биоиндустрии (рис. 1.1) следует отнести некоторые отрасли пищевой промышленности (широкомасштабное выращивание дрожжей, водорослей и бактерий для получения белков, аминокислот, витаминов, ферментов) сельское хозяйство (клонирование и селекция сортов растений, производство биоинсектицидов, выведение трансгенных животных и растений) фармацевтическую промышленность (разработка вакцин, синтез гормонов, антибиотиков, интерферонов, новых лекарственных препаратов) экологию — защиту окружающей среды и устранение загрязнений (очистка сточных вод, переработка хозяйственных отходов, изготовление компоста и др.). [c.7]

    Векторы для клонирования в таких системах представляют собой двойные репликоны, способные существовать и в . соН, и в той клетке хозяина, для которой они предназначены. С этой целью создают гибридные векторы, содержащие репликон какой-либо из плазмид Е. соИ и требуемый репликон (из бактерий, дрожжей и др.), и первоначально клонируют с последующим отбором требуемых генов в хорошо изученной системе. Затем вьщеленные рекомбинантные плазмиды вводят в новый организм. Такие векторы должны содержать ген (или гены), придающий клетке-хозя-ину легко тестируемый признак. [c.124]

    Клонирование в дрожжах. Среди дрожжей наиболее полно изучен вид S. erevisiae. У этого вида в гаплоидных клетках содержится 17 хромосом, в их составе идентифицировано несколько сотен генов. Большинство штаммов дрожжей содержат автономно реплицирующуюся кольцевую ДНК длиной 2 мкм. Плазмида S pl S. erevisiae содержит около 6300 пар оснований и имеет 50—100 копий на клетку. Ее гибриды с плазмидами обычно и используют в [c.124]

    Процедура вьщеления ДНК в клетки дрожжей довольно проста. Обычно целлюлозную клеточную стенку удаляют обработкой ферментами, получая так называемые сферопласты. Их инкубируют с ДНК в присутствии СаС и полиэтиленгликоля. Мембрана при этом становится проницаемой для ДНК. Дальнейшая ин( а-ция сферопластов в среде с агаром восстанавливает клеточную стенку. Селекция дрожжевых клонов, трансформированных рекомбинантными плазмидами, основана на применении в качестве клеток-хозяев определенных мутантов, не способных расти на среде, в которой отсутствует тот или иной питательный компонент. Векторная плазмида содержит гены, которые при попадании в клетку-хозяина придают ей этот недостаюший признак. Трансформанты легко отбираются по их способности давать колонии на обедненной среде. Применяя приемы, аналогичные использовавшимся при клонировании в бактериях, удается достичь синтеза чужеродных белков в дрожжевых клетках. Эти клетки подобно В. subtilis секретируют большое количество белка во внеклеточную среду, что используется также для секреции чужеродных белков, например интерферона человека (с. 43). [c.125]

    Если перенести такие фрагменты на подложку и провести гибридизацию с клонированным фрагментом определенного участка генома, можно получить данные о структуре хроматина в этом участке. В некоторых наиболее упорядоченных участках хроматина лесенка продолжается вплоть до олигомера, содержащего 15 нуклеосом и выше. Однако в большинстве случаев эта лесенка смазывается значительно раньше, причем для транскрибируемых участков хроматина регулярность расположения нуклеосом значительно ниже, чем для неактивного хроматина. Длины олино-гуклеосомных фрагментов ДНК. кратны величине, называемой нуклеосом ным повтором. Размер нуклеосомного повтора изменяется от 165 п. о. у дрожжей до 200 и.о. у высших эукариот и достигает 240 п. о. в хроматине из спермы морского ежа. [c.243]

    Незначительные ограничения этого метода компенсируются информацией, которая может быть получена из независимых анализов комплиментарных цепей. Применение ферментов в этом методе ограничивается введением метки в концевой фосфат и рестрикционным расщеплением цепей на блоки подходящей длины, примерно в 100—150 остатков, с частичным их перекрыванием. Метод нашел наибольшее применение в определении последовательности оснований контролирующих областей генов, например для исследования дуплекса в 223 пары оснований, представляющего собой ген 5S РНК пекарских дрожжей и имеющего промоторный и тер-минаторньй участки транскрипции [24]. Другой прекрасный пример использования этого метода — установление полной первичной структуры -глобиновой мРНК кролика, структура которой была закреплена получением с помощью транскриптазы соответствующей ей циклической ДНК [25]. В ходе амплификации этой циклической ДНК клонированием бактериальных плазмид (см. разд. 22.3.4) были потеряны 13 остатков с 5 -конца. К счастью, их последовательность удалось установить в результате исследований с использованием метода плюс и минус [26]. Совместное применение этих методов позволило установить последовательность гена длиной в 589 пар нуклеотидов. [c.192]


    Для экспрессии клонированных эукариотических генов интенсивно используют обычные дрожжи Sa haromy es erevisiae. Тому есть несколько причин. Во-первых, это одноклеточный организм, генетика и физиология которого детально изучены и который можно выращивать как в небольших лабораторных колбах, так и в промышленных биореакторах. Во-вторых, выделены и охарактеризованы несколько сильных промоторов этих дрожжей, а для систем эндогенных дрожжевых экспрессирующих векторов могут использоваться природные, так называемые 2 мкм-плазмиды. В-третьих, в клетках [c.136]

    Для синтеза разнообразных белков, кодируемых клонированными генами, использовались дрожжи S. erevisiae. Их генетика хорошо изучена, а кроме того, их можно выращивать в больших ферментерах. Чтобы упростить очистку белков, были сконструированы векторы, обеспечивающие их секрецию. С помощью S. erevisiae было получено множество самых разных аутентичных белков. Однако многие рекомбинантные белки в этой системе не подвергались носттрансляционной модификации, к тому же их выход зачастую был недостаточно высок. Поэтому были предприняты попытки разработать другие дрожжевые системы синтеза рекомбинантных белков. [c.154]

    Для того чтобы добиться экспрессии генов этих ферментов в дрожжах S. erevisiae, пришлось провести делецию (удаление) интронов из клонированных в E. oli нативных генов и поставить эти гены под контроль дрожжевых промоторов и концевых регуляторных последовательностей. [c.106]

    Нередко возникает задача ввести ген в клетки эукариот, например в дрожжевые клетки, в которых могут нарабатываться белки, прошедшие после их образования необходимые стадии модификации, несвойственные прокариотическим клеткам. Для этой цели используют специальные, так называемые челночные, векторы, которые могут автономтю размножаться как в прокариотических, так и в эукариотических клетках, например в Е.соН и дрожжах. В эукариотические клетки плазмиды вводят на заключительных стадиях, поскапьку многие предварительные этапы клонирования существенно проще проводить в кле гках прокариот. [c.304]

    Обычно векторы для клонирования в таких системах представляют собой двойные репликоны, которые мог т существовать и в Е. OU. и в той клетке-хозяине. для которой они предназначены. Это достигается созданием гибридных векторов, содержащих реп-ликон какой-либо из плазмид Е. oli и требуемый репликон, например плазмиды В. subtilis или дрожжей, что позволяет проводить первоначальное клонирование и отбор требуемых генов в хорошо изученной системе Е. oli, а затем уже вводить выделенные рекомбинантные плазмиды в новый организм. [c.439]

    Поскольку дрожжи представляют собой эукариотический организм, можно было бы ожидать, что гены различных эукариот, в том числе и те, которые содержат интроны, будут корректно экспрессироваться в дрожжевых клетках. Однако это не так. Например, экспрессия генов -глобнна кролика в дрожжах не происходит благодаря некорректности транскрипции и последующего сплайсинга РНК. Тем не менее, применяя приемы, аналогичные использовавшимся при клонировании в бактериях, удается достичь синтеза чужеродных белков в дрожжевых клетках. Такие клетки, подобно В. subtilis, секретируют значительное количество белков во внеклеточную среду, что используют также для секреции чужеродных белков. С этой целью к экспрессируемому гену присоединяется участок, кодирующий сигнальный пептид, обусловливающий секрецию и отщепляемый в ее процессе. В результате в клетке синтезируется белок, содержащий на N-конце сигнальный пептнд. Этот белок секретируется в окружающую среду. Таким образом были получены, например, штаммы дрожжей, секретирующие интерферон человека. [c.440]

    Клонирование рекомбинантньк генов и их экспрессия с образованием белковьк продуктов клетками Е. oli и дрожжей, которые можно вырастить в огромных количествах, позволяют осуществить промышленное производство многих полезных белков, которые другими способами получить в больших масштабах очень трудно. Перспективы использования рекомбинантных ДНК привели к возникновению новой ветви молекулярной биологии - генетической инженерии. [c.989]

    Найти единственный нужный сегмент ДНК, содержащийся всего в одном гене среди огромного количества генетического материала клетки человеческого организма столь же трудно, как отыскать пресловутую иголку в стоге сена. Последовательности, которые являются специфическими для каждого отдельного гена, составляют всего одну миллионную часть всего генетического материала. Решение этой проблемы дает использование технологии рекомбинантных ДНК. Фрагменты ДНК человеческой клетки встраиваются в миллион быстро делящихся бактерий. Каждая из бактерий, которые выращиваются отдельно, дает целую колонию своих потомков. Затем находят колонию бактерий, содержанщх нужный ген. Для этого применяют методы диагностики, чувствительные к определенной функции гена. Каждая из быстро растущих колоний бактерий дает миллиарды одинаковых копий каждого гена. Поэтому дальше такой ген можно выделить из бактерий в химически чистом виде. Такой процесс называют клонированием. С помощью его к настоящему времени были очищены сегменты ДНК более 100 различных генов человека. Примерно столько же сегментов ДНК было выделено из генов других позвоночных, например мыши. Еще большее число генов выделено из простейших организмов, таких как дрожжи. [c.180]

    При помощи ферментов ксиланаз гемицеллюлозы могут быть разрушены с образованием пентозных сахаров. Найдены виды дрожжей, способные осуществлять ферментацию пентоз, но онк чувствительны к спирту. Порог этой чувствительности может быть изменен генетическими методами кроме того, путем клонирования гена ксилоизомеразы дрожжам Sa haromy es может быть передана способность потреблять ксилозу. Это позволит им осуществлять конверсию ксилозы (субстрата, на котором они не растут) в ксилулозу (субстрат, который они сбраживают). [c.177]

    YA -векторы, которые также используются для клонирования больших фрагментов ДНК, представляют собой искусственную дрожжевую минихромосому. YA -вектор содержит центромеру, теломеры и точку начала репликации. В такой вектор можно встроить фрагменты чужеродной ДНК размером более 100 т. н. п., и такая минихромосома, введенная в клетки дрожжей, будет реплицироваться и вести себя аналогично другим дрожжевым хромосомам при митотическом делении. [c.41]

    Вакцины — антигены, получают, клонируя гены возбудителя болезни в Е. oli, дрожжах, клетках насекомых и млекопитающих. В настоящее время клонирован ген поверхностного антигена HBS-внруса гепатита (сывороточного гепатита), ген белка оболочки VPI — вируса ящура. Вирус ящура существует в виде многих серотипов. Методом белковой инженерии удалось скомбинировать иммуногенные компоненты различных серотипов в рамках одной вакцины-антигена. [c.249]

    Число случайно полученных фрагментов, которые должны быть клонированы для того, чтобы обеспечить высокую вероятность наличия каждой последовательности генома хотя бы в одной химерной плазмиде, уменьшается с ростом размеров фрагмента и увеличивается с ростом размеров генома и желаемой вероятности. Для 99%-ной вероятности необходимо 1500 клонов с фрагментами ДНК Е. соИ для дрожжей размер библиотеки возрастает до 4600 клонов, для D. melanogaster-до 48 ООО и до 800 ООО-для млекопитающих. Все эти библиотеки клонированных фрагментов, где достигается такая ве- [c.244]

    Вследствие различия в механизмах экспрессии генов у прокариот и эукариот, Е. oli может оказаться хозяином, мало подходящим для производства белков эукариотических организмов. Поэтому разработаны методы получения векторов для клонирования различных генов в клетках дрожжей - одноклеточных эукариот. Эти клонирующие векторы получают из репликонов дрожжевых клеток, так называемых 2 л-плазмид. Точки начала репликации этих векторов взяты у плазмид 2 л и у pBR322, в результате чего они могут реплицироваться как в дрожжевых клетках, так и в . соИ. Примером использования дрожжей для синтеза белков посредством клонирования генов эукариот может служить осуществленный таким образом синтез интерферона человека (интерферон-белок, обладающий противовирусным действием в клетках человека и, возможно, противоопухолевым действием вообще). [c.290]

    Методы клонирования и секвенирования ДНК позволили провести тщательный сравнительный анализ генетической организации митохондриальных геномов у целого ряда организмов, от грибов до человека. Определение полной нуклеотидной последовательности человеческой митохондриальной ДНК, содержащей 16 569 нуклеотидных пар, было завершено в 1981 г. Известны также частичные последовательности митохондриальных геномов быка, дрожжей и Neurospora. Полученные результаты свидетельствуют о том, что митохондриальные геномы высших и низших эукариот, кодирующие примерно один и тот же набор функций, в то же время характеризуются различиями в смысловом значении некоторых кодонов, в правилах антикодон-кодонового узнавания и существенными различиями в общей структурной организации. Можно полагать, что существенным фактором эволюции митохондриальных геномов была селекция на максимальную структурную компактность при максимальной информационной нагруженности (см. Дополнение 12.1). Это, вероятно, достигалось за счет таких изменений генетического кода, которые позволили сократить необходимый для считывания набор тРНК. При этом митохондрии млекопитающих, характеризующиеся наиболее компактной организацией генома, подверглись соответ- [c.95]


Смотреть страницы где упоминается термин Клонирование в дрожжах: [c.243]    [c.124]    [c.24]    [c.105]    [c.149]    [c.462]    [c.439]    [c.440]    [c.200]    [c.989]    [c.176]    [c.70]    [c.71]    [c.176]    [c.328]    [c.336]    [c.408]    [c.413]    [c.413]    [c.210]   
Смотреть главы в:

Биоорганическая химия -> Клонирование в дрожжах




ПОИСК





Смотрите так же термины и статьи:

Дрожжи



© 2025 chem21.info Реклама на сайте