Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Общий ход качественного анализа неорганических веществ

    Качественный анализ позволяет установить, какие элементы входят в состав исследуемого вещества (кроме углерода и водорода в органических соединениях могут содержаться кислород, азот, сера, галогены, фосфор и другие элементы). Принцип качественного анализа заключается в переводе химических элементов в неорганические соединения, которые затем легко определяются общими аналитическими методами. Например, при обнаружении углерода и водорода органическое соединение сжигают, а образовавшиеся окислы углерода (СО2) и водорода (Н2О) определяют по помутнению раствора Са(ОН)д и наличию капель воды на стенках пробирки, в которой проводилось сожжение. Галоген в органическом веществе определяют по методу Бейльштейна. Этот метод заключается в том, что на предварительно прокаленную в пламени горелки медную проволочку наносят каплю определяемого раствора и за- [c.31]


    Другая цель качественного органического анализа состоит в открытии определенного органического вещества в какой-либо смеси продуктов. Эта задача, по причине чрезвычайного разнообразия и большой изменяемости органических соединений, сопряжена со значительными трудностями, и здесь нет возможности установить точных общих правил, как в анализе неорганическом [4, с. 139]. Происходило это потому, что методы неорганического анализа для разделения или осаждения ионов практически не могли найти применения в органическом анализе. Правда, существует, казалось бы, некоторая аналогия между качественными реакциями на неорганические ионы и реакциями на определенные функциональные группы в органических соединениях. Но, во-первых, органические реакции вообще менее специфичны и избирательны во-вторых, идентификация какой-либо функциональной группы редко дает представление вообще о соединении, скорее она может быть использована для группового анализа, для установления, к какому классу соединений можно отнести испытуемое вещество. Присутствие некоторых функциональных групп с трудом можно было установить химическими методами исследования, а физические методы еще не были в достаточной степени разработаны. Тем не менее в конце аналитического периода истории органической химии, как это видно из цитированного руководства Жерара и Шанселя, имелась уже некоторая система в вещественном качественном анализе, позволяющем идентифицировать определенные органические соединения, особенно имеющие практическое значение, и в первую очередь для медицины. В этом руководстве указаны, например, способы идентификации органических оснований, или алкалоидов (анилина, никотина), большой группы собственно алкалоидов (морфина, наркотина, стрихнина, хинина и др.), органических кислот (синильной, уксусной, муравьиной, бензойной, щавелевой, виннокаменной, лимонной и яблочной), а также группы углеводов, белковых веществ, мочевой кислоты, карбамида (мочевины), креатина, цистина, ксантина и т. д. [c.290]

    В книге изложены основы теории, методы и техника качественного анализа неорганических веществ. Особое внимание в книге уделено общим практическим указаниям, технике химического эксперимента и безопасности работы в аналитических лабораториях, а также разбору условий проведения реакций и способам расчета. [c.2]

    ОБЩИЙ ХОД КАЧЕСТВЕННОГО АНАЛИЗА НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ [c.161]


    В книге изложены основы теории, методы и техника качественного анализа неорганических веществ. Особое внимание уделено общим практическим указаниям и безопасности работы в аналитических лабораториях. [c.2]

    В книге изложены общие теоретические основы аналитической химии, теория, методы н техника качественного анализа неорганических веществ, содержащих наряду с обычными химическими элементами также некоторые редкие и рассеянные элементы. [c.4]

    Данная книга является первой частью пособия по аналитической химии и содержит основы теории анализа неорганических веществ, общие практические указания и методы качественного анализа различных неорганических соединений. [c.2]

    Качественный анализ применим как к органическим, так и к неорганическим веществам. Качественный анализ органических соединений составляет особую отрасль, изучение которой возможно после накопления студентом опытных знаний по органической химии. Качественный же анализ неорганических веществ может быть успешно воспринят на менее сложной химической основе. Многие из применяемых реакций изучались в общей химии наряду с ними имеется рад новых. Реакции комбинируются в такой последовательности, чтобы можно было провести систематическое разделение и обнаружить неизвестные составные части. Таким путем студент повторяет старый материал, изучает новые реакции и знакомится с теорией и практикой неорганической химии. [c.9]

    В том случае, если есть уверенность в чистоте органического вещества, проводят его качественный анализ, т. е. исследуют, какие элементы входят в его состав. В органических веществах помимо постоянной составной части — углерода наиболее часто содержатся водород, кислород, азот, сера, фосфор и галогены (С1, Вг, 1). Общий принцип открытия этих элементов в органических соединениях заключается, в том, что элементы переводят в неорганические соединения и затем открывают их методами неорганической и аналитической химии. [c.16]

    В общем можно сказать, что применению комплексонов в качественном анализе было уделено внимание в соответствии со значением этого анализа в практике. Главные задачи практического анализа лежат почти исключительно в области количественного анализа, в котором применение комплексонов привело к выдающимся успехам. В литературе пока описано только небольшое число методов качественного открытия с применением комплексона в качестве маскирующего вещества. Использование комплексона для этой цели приводит к упрощению аналитических операций и экономии дорогостоящих реактивов. Ниже приводится несколько примеров селективных реакций с органическими и неорганическими реактивами. [c.262]

    По органическому анализу имеется меньше общих руководств, чем по анализу неорганических соединений. Ниже приведены общие руководства, посвященные качественному анализу, методам определения строения вещества и количественному органическому анализу. Среди них наиболее важными являются следующие. [c.229]

    В книге почти все опыты проводятся с малыми количествами веществ, в основном отвечающими полумикрометоду. Прогрессивный полу микрометод широко используется в качественном анализе. Очевидно, является необходимым внедрение его и в общей (неорганической) химии. Следует как можно раньше обучить студентов приемам работы этим методом. Поэтому в книге подробно изложена техника выполнения лабораторных работ. [c.3]

    Исторически для лолучения информации о качественном и количественном составе вещества прежде всего использовали химические методы, т. е. методы, основанные на получении в результате химической реакции того или иного соединения, обладающего определенными аналитическими свойствами. Эта ситуация закреплена в самом названии аналитическая химия . Поэтому классические методы аналитической химии, особенно в той части, которая касается анализа неорганических веществ, опираются прежде всего на неорганическую химию как более общую дисциплину. Кроме того, нужно есть следующее. Преподавание аналитической химии в высшей щколе имеет помимо конечной главной цели — обучение основам аналитической химии — также задачу научить химическо му мышлению. Распространено мнение (и оно вполне оправедливо), что аналитическая химия представляет собой идеальное средство для достижения этой, второй цели, иначе говоря, аналитическая химия естественно входит в структуру общехимических дисциплин вуза. Поэтому, как правило, курс классической аналитической химии, представляющий по существу неорганическую аналитическую химию, излагается В1 вузах сразу же после неорганической химии, а иногда совмещается с ней в единый курс. Именно для, такого вузовского курса и написан двухтомный учебник Анорганикум , изданный в ГДР. [c.5]

    Есть основание считать, что метод хроматографии на бумаге может быть применим в общей схеме классического качественного анализа катионов. Основная трудность состоит в обнаружение неорганических веществ. В большинстве случаев используют неорганические и органические реактивы. [c.89]


    Поскольку удерживание вещества данным сорбентом обусловливает лишь единичный сигнал, взаимно-однозначное соответствие между ним и природой компонента смеси может быть установлено лишь тогда, когда известно, что никакое другое вещество не обладает идентичными сорбционными свойствами по отношению к использованному в колонке сорбенту и, следовательно, не может иметь такого же (отличающегося менее чем на величину, определяемую шириной зоны) времени удерживания. Разумеется, в общем случае такое заключение сделать весьма затруднительно даже при наличии большого числа эталонов или данных по их удерживанию. Дополнительную информацию можно получить путем использования так называемых селективных детекторов, имеющих повышенную чувствительность к соединениям определенных классов. Здесь для идентификации используется не только время появления сигнала, но и интенсивность последнего. Кроме того, процесс идентификации значительно упрощается, если известно, какие соединения могут присутствовать в данном конкретном случае, например, при известном происхождении (или истории) объекта. Сюда же относятся методы, связанные со специальной обработкой смеси, например химическим удалением веществ определенных классов с последующей хроматографической идентификацией остальных веществ (что в некоторой степени аналогично систематическому качественному анализу смеси неорганических соединений). [c.7]

    Химические идентификация (качественный анализ) и измерения (количественный анализ) являются предметом специальной химической науки - аналитической химии. В настоящей главе будут рассмотрены некоторые общие принципы химической идентификации и количественного анализа веществ на основе изученных ранее закономерностей химических процессов и свойств неорганических и органических веществ. [c.500]

    Работая в химической лаборатории, вы уже приобрели значительный опыт в аналитической химии. Вы, вероятно, научились пользоваться аналитическими весами и можете взвешивать с точностью до 0,1 мг (когда это необходимо), можете работать с бюретками и пипетками — этими незаменимыми инструментами объемного анализа, умеете обращаться с простым спектрофотометром, чтобы измерить светопоглощение раствора, и использовать рН-метр для определения кислотности раствора, умеете проводить простые качественные испытания на некоторые обычные неорганические ионы и распознавать некоторые вещества просто по виду. Все эти инструменты и методики входят в арсенал химика-экспериментатора наряду с другими приборами и приемами, часто значительно более изощренными и тонкими. В этой главе будет рассмотрен целый ряд аналитических методов и приемов (хотя, конечно, отнюдь не все), с тем чтобы, не вдаваясь в подробности, дать читателю общее представление об областях их применения. [c.204]

    Поскольку для ряда специальностей все изучение химии ограничивается курсом общей химии, в предлагаемый лабораторный практикум, помумо общепринятых теоретических разделов и описания свойств неорганических веществ, включены в достаточно широком объеме следующие разделы органические соединения (в том числе высокомолекулярные), физико-химический анализ по Н. С. Ку-рнакову, элементы качественного и количественного химического анализа, синтез ряда соединений с последующей проверкой их свойств. [c.3]

    Подробную информацию о качественных методах обнаружения неорганических соединений азота можно найти в ряде руководств [6, 158, 334]. Методы обнаружения азота в органических материалах (органический качественный анализ) подробно излагаются в книге [868]. Здесь же описаны способы превращения общего азота в легкоизмеряемые формы. Вопросам систематической микро-идентификации органических соединений, в том числе методам быстрого открытия азота с использованием кольцевой бани Вейсса (наряду с другими важнейшими гетероатомами), посвящена работа [412]. Открываемый минимум азота 0,01—1 мкг. Качественный элементный анализ органических веществ без предварительной их минерализации описан в работе [777]. Ультрамикрокапдллярно-му методу открытия азота в органических веществах посвящена работа [1237]. [c.32]

    Вторая часть предварительного исследования вещества — качественный элементарный анализ, который показывает, какие из элементов содержатся в этом веществе. Органическое вещество, естественно, содержит углерод и обычно водород. Присутствие последнего легко подтверждается окислением вещества сухой окисью меди (II), в ходе которого весь имеющийся водород превращается в воду. Из других неметаллов, которые могут иметься в веществе, чаще всего встречаются галогены, азот, фосфор, сера и кислород. Присутствие кислорода может быть иногда подтверждено по пробе окисления солей железа(П1). Для этого из хлорида железа (III) и роданистого калия готовят реагент, содержащий комплексную соль Ге +[Ре(8СМ)е] . Если работать с бензольным или толуольным раствором реагента, то он дает темно-крас-ное окрашивание со многими (хотя и не со всеми) кислородсодержащими веществами. В основе всех качественных реакций на другие элементы лежит принцип превращения их в ионные формы, которые можно идентифицировать методами неорганического анализа. Так, например, в пробе плавления с натрием по Лассеню небольшое количество органического вещества сплавляют с натрием. Если в веществе имеется азот, то в растворе после обработки расплава он появляется в виде цианид-иона, сера — в виде сульфид-иона, а галоген — в виде галоген-иона, причем идентификация всех этих ионов воз-мон на с использованием общих методов анализа анионов. Фосфор обнаруживается в виде фосфата. [c.14]


Смотреть страницы где упоминается термин Общий ход качественного анализа неорганических веществ: [c.173]    [c.4]    [c.6]    [c.20]    [c.300]    [c.23]   
Смотреть главы в:

Аналитическая химия -> Общий ход качественного анализа неорганических веществ




ПОИСК





Смотрите так же термины и статьи:

Анализ вещества

Анализ качественный

Качественный анализ неорганический

Качественный анализ неорганических веществ

Общий ход анализа вещества

неорганических веществ



© 2025 chem21.info Реклама на сайте