Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Общие закономерности фрагментации органических соединений

    Общей закономерностью фрагментации органических соединений оказывается снижение интенсивностей пиков при переходе к более тяжелым гомологам. Это связано с увеличением числа возможных направлений распада и легкостью отщепления тяжелых углеводородных радикалов. Соединения, содержащие разветвленные углеводородные радикалы, обычно дают менее интенсивные пики М -, чем изомеры нормального строения. [c.177]


    В этой главе рассмотрены только наиболее общие закономерности фрагментации органических соединений, обусловленные конкретными функциональными группами. Эти закономерности лежат в основе табл. 2 и 3 (Приложение), где приведены для наиболее важных классов органических соединений основные характеристические осколочные ионы, а также нейтральные частицы, элиминирующиеся из М . Этими таблицами удобно пользоваться при интерпретации масс-спектров различных соединений. [c.167]

    Д. Ключевым моментом в процедуре интерпретации масс-спектров с целью установления структуры молекулы являются обнаружение основных характеристических ионов, постулирование их предположительной структуры и выяснение основных направлений фрагментации. Наряду с рассмотренными в гл. 7 общими и частными закономерностями фрагментации органических соединений при этом удобно пользоваться корреляционной таблицей (табл. 2), приведенной в Приложении. В этой таблице приведены массовые числа (m/z) и предполагаемые составы или структуры ионов, обычно наблюдаемые в масс-спектрах соединений конкретных типов. Пользуясь этой таблицей, можно в ряде случаев приписать структуры основным ионам в масс-спектре и высказать соображения о наличии тех или иных групп в молекуле, а также о типе соединения. Поскольку одну и ту же целочисленную массу могут иметь несколько изобарных ионов, желательно определить элементный состав интересующих нас ионов в исследуемом спектре с помощью масс-спектрометрии высокого разрешения. В этом случае приписание структуры соединению будет более надежным. [c.205]

    Задачи и методы выявления закономерностей и особенностей фрагментации органических соединений принципиально отличаются от задач и методов структурного анализа и идентификации неизвестных веществ по их масс-спектрам прежде всего тем, что строение изучаемых соединений известно. Конечная цель такого исследования впервые синтезированных или ранее не охарактеризованных веществ — связь спектральных признаков со строением веществ и получение данных о механизмах фрагментации отдельных соединений, их совокупностей со сходными элементами структуры или, чаще всего, целых классов (гомологических рядов). Это подразумевает выявление основных направлений распада молекулярных ионов, классификацию этих процессов, соотнесение всех интенсивных сигналов спектра с соответствующими осколочными ионами и установление связи таких осколочных ионов с теми или иными структурными фрагментами молекул. Чаще всего результатом подобного исследования является формулировка правил интерпретации спектров, пригодных для структурного анализа неизвестных соединений этого же типа. Полученные данные нередко представляют в виде схем фрагментации как индивидуальных соединений, так и, в общем виде, гомологических рядов. При этом следует учитывать, что структуры осколочных ионов обычно неизвестны, и на таких схемах их предпочтительнее изображать брутто-формулами. [c.50]


    ОБЩИЕ ЗАКОНОМЕРНОСТИ ФРАГМЕНТАЦИИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ [c.41]

    Интенсивности всех пиков /отн обычно выражают в процентах от интенсивности максимального пика спектра. В другом (независимом) способе представления количественных данных по интенсивностям за 100 % принимают их сумму (суммарный ионный ток, обозначаемый символом Ет> m 25, а в общем случае — минимальное массовое число, с которого начинают сканирование спектра). Обе формы представления данных не исключают друг друга первый способ характеризуется простотой, наглядностью и удобен при идентификации и структурном анализе веществ по масс-спектрам. Второй способ рациональнее использовать прп характеристике и обсуждении количественных закономерностей фрагментации органических соединений. [c.32]

    Масс-спектрометрическое определение строения неизвестных органических соединений по своей сущности — задача классификационная, так как обязательно включает стадию отнесения неизвестного вещества к группе соединений с общими особенностями строения молекул, т. е. классификацию или групповую идентификацию. Индивидуальную идентификацию— отождествление веществ сравнением полученных в ходе анализа масс-спектров с литературными данными — следует рассматривать как самостоятельную задачу, решение которой требует разработки и использования наиболее рациональных алгоритмов обработки больших массивов библиотечных данных (каталогов масс-спектров) с учетом воспроизводимости таких спектров. При индивидуальной идентификации, таким образом, можно не принимать во внимание общие закономерности фрагментации отдельных классов соединений. Групповая идентификация обязательно требует наличия информации об особенностях диссоциативной ионизации предполагаемых классов органических соединений, а окончательное установление структуры неизвестных веществ невозможно без данных об их составе (брутто-формуле). [c.6]

    Одним из способов установления строения исследуемого соединения этим методом является автоматическое сравнение зарегистрированного спектра с банком спектров, введенных в память ЭВМ. Однако это осуществимо только в том случае, если в данном банке имеется спектр именно этого вещества. Поэтому данный способ не пригоден для установления строения совершенно новых, синтезируемых или выделяемых из природных источников, соединений. В последнее время делаются попытки использовать ЭВМ для автоматической интерпретации спектров по специальным программам, в основу которых положены общие и специфические закономерности фрагментации органических соединений. Однако и этот способ не совершенен и в лучшем случае лишь помогает ручной интерпретации спектров, которой пользуются все исследователи. Для успешной интерпретации масс-спектра требуется знание как общих, так и частных масс-спектральных характеристик органических соединений различных классов, изложенных в специальных монографиях. Однако в отечественной литературе особенно в последние годы этим вопросам уделялось мало внимания. Да и последние зарубежные монографии такого типа опубликованы более 15лет назад и на русский язык не переводились. За последние годы накоплен большой экспериментальный материал, разбросанный во многих специальных и часто малодоступных периодических изданиях, который нигде не обобщался. Данная книга имеет целью хотя бы частично восполнить этот существенный пробел. [c.8]

    Учитывая, что закономерности фрагментации органических соединений изомерных рядов резко зависят от относительного расположения кратных связей, циклов и гетероатомов (особенно в случае разных вариантов сопряжения между ними), во всех подобных случаях необходима характеристика таких рядов индивидуальными спектрами ионных серий. Так, например, ряд диарилалкенов формально может быть охарактеризован одним общим спектром ионных серий  [c.94]

    Масс-спектры большинства элементорганических соединений имеют многолинейчатый характер вследствие полиизотопности элементов (см. приложение П). Эта много-линейчатость усложняет интерпретацию масс-спектра из-за эффекта наложения пиков изотопных ионов на пики ионов фрагментов, отличающихся лишь на несколько Бромных единиц массы, например пиков ионов М" и (М—Н)" . С другой стороны, именно благодаря такой полиизотопности при рассмотрении спектра сразу видны группы пиков ионов, содержащих определенный элемент (металл). Не затрагивая особенностей распада органических соединений каждого из элементов, ограничимся лишь рассмотрением самых общих закономерностей фрагментации некоторых типо,в элементорганических я- и а-соединений. [c.152]

    Масс-спектр представляет собой совокупность пар чисел, характеризующих массу и количество частиц, образующихся при ионизации органических соединений различными способами. Дискретный характер масс-спектров позволяет эффективно использовать ЭВМ для их обработки, хранения и интерпретации. Значительная часть регистрируемых масс-спектрометром частиц (а иногда все) соответствует вторичным ионам, возникающим при распаде (фрагментации) молекулярных ионов, первоначально образующихся при ионизации незаряженных молекул. По этой причине для интерпретации масс-спектров первостепенное значение имеет накопленная в настоящее время обширная информация об общих закономерностях фрагментации различных классов соединений. Именно этим проблемам посвящено подавляющее большинство исследований в органической масс-спектрометрии. Однако фрагментация ионов относится к процессам, протекающим во времени (подчиняется закономерностям реакций распада первого порядка), и поэтому характер получаемых спектров определяется не только составом и строением исходных молекул, но также и условиями эксперимента способами и режимами ионизации, аппаратурными и другими факторами. Зависимость масс-спектров от условий их формирования и регистрации является причиной сравнительно невысокой воспроизводимости интенсивностей сигналов, создает некоторые трудности при решении задач идентификации и делает необходимой статистическую обработку экспериментальных данных. Использованию основных положений математической статистики при интерпретации масс-спектров до сих пор не уделялось должного внимания, и эти важные вопросы требуют сиеци-дльного рассмотрения. [c.4]


    Для окончательного выбора из трех оставшхся рядов необходим уже более подробный анали. общих [закономерностей фрагментации. Как в ряду 1-алкоксидиазен-2-оксидов, так и алкилкарбонатов молекулярным массам 90 соответствуют простейшие гомологи СНзО—N = N(0)—СНз и (СНзО)гСО, структуры которых не могут объяснить появления максимального пика в спектре неизвестного соединения с т/г 29 и пика иона [М — 28] Таким образом, остается единственно возможный вариант групповой идентификации отнесение к ряду диалкилпероксидов. Последующая детальная интерпретация спектра с учетом закономерностей фрагментации органических пероксидов при электронном ударе указывает на структуру диэтилпероксида. [c.82]

    Когда класс соединения установлен., для выяснения его структуры необходим детальный анализ пиков ионов [М—СйН2й .11+ и [М—СйН2й1+, т. е. именно тех, которые оказывались малоинформативными при определении класса вещества по масс-спектру. Для этого следует использовать подробные сведения о закономерностях фрагментации соединений данного класса с целью установить характер процессов, приводящих к появлению всех главных пиков спектра (а- или Р-распад, перегруппировка Мак-Лафферти и др.). В результате такого анализа можно предположить возможные структуры фрагментов и всей молекулы, объясняющие появление наблюдаемых в спектре пиков осколочных ионов. Установление структуры простейших гомологов возможно только по пикам первичных осколочных ионов, но в общем случае для решения этой задачи следует привлекать и пики вторичных осколочных, ионов, подтвердив их образование из первичных соответствующими пиками метастабильных ионов. Многообразие возможностей фрагментации сложных органических соединений затрудняет формулировку каких-либо общих рекомендаций для их детального структурного анализа. Следует отметить, что масс-спектры чрезвычайно полезны при идентификации органических веществ, что, однако, представляет собой самостоятельную задачу в масс-спектрометрии. [c.186]

    Установление структуры органических соединений по масс-спектрам включает определение молекулярной массы, природы и количества функциональных групп, строения скелета молекулы и по возможности пространственного строения. Если эти сведения не удается получить при прямом масс-спектрометри-ческом исследовании, то проводят химическую модификацию образца и последующий анализ масс-спектров модифицированных продуктов. Химическое модифицирование может состоять а) в получении соединения, имеющего интенсивный пик М " б) в целенаправленной трансформации функциональных групп путем их защиты или других химических превращений в) в получении соединения, имеющего более характеристический масс-спектр, который легче интерпретировать на основе общих и специфических закономерностей фрагментации г) в получении гомологов или аналогов (в частности, дейтероаналогов) с последующим исследованием сдвига характеристических ионов при переходе от исходного соединения к модифицированному и др. [c.179]


Смотреть главы в:

Интерпритация масс-спектров органических соединений  -> Общие закономерности фрагментации органических соединений




ПОИСК





Смотрите так же термины и статьи:

Общие закономерности



© 2025 chem21.info Реклама на сайте