Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вакуумные конструкционные материалы

    Об углероде в качестве конструкционного материала для вакуумной техники см. работу [9]. [c.10]

    П. п. находят широкое применение для герметизации двигателей холодильных устройств, в качестве мембран для счетных устройств и диафрагменных насосов, при изготовлении шлангов для транспортировки жидкого азота, в качестве рассеивателей света в оптич. приборах, как конструкционный материал в вакуумной аппаратуре. Эти пленки используют также для упаковки пиш евых продуктов, медикаментов, изготовления различных емкостей. [c.58]


    Рений. Высокая стойкость рения против некоторых кислот обеспечивает его использование в химическом мащиностроении в качестве конструкционного материала, а также в виде покрытий для различных металлов. Особенно широко рений применяется в электротехнической и вакуумной технике при изготовлении электронных трубок, электровакуумных приборов, а также в технике измерения высоких температур. Благодаря тому, что рений снижает температуру перехода вольфрама и молибдена в хрупкое состояние, замедляет рекристаллизацию и улучшает их свариваемость, он находит все большее применение в металлургии этих металлов [13]. [c.365]

    Окись бериллия, как и сам металл, находит применение в ядерной технике в качестве замедлителя и отражателя нейтронов и как конструкционный материал, особенно в высокотемпературных реакторах. В традиционных областях применения окиси бериллия значение ее не только сохранилось, но и увеличилось. Как огнеупорный материал ВеО в ряде случаев незаменима. Это касается, в частности, изготовления тиглей для плавки металлов (Ве, и, ТЬ, Т1), где используется такое уникальное свойство окиси, как необычайно высокая теплопроводность наряду с огнеупорностью. Окись бериллия широко используется при конструировании индукционных печей и вакуумных нагревательных приборов. [c.111]

    Благодаря исключительному сочетанию физико-механических и диэлектрических свойств поликарбонат может широко применяться как конструкционный материал во многих отраслях промышленности в точном приборо- и машиностроении, для изготовления крепежных деталей, в радио- и электропромышленности, в светотехнике, в фото-и кинопромышленности и т. д. Поликарбонатные смолы легко перерабатываются всеми известными для термопластов методами литьем под давлением, экструзией, вакуумным формованием [c.106]

    Если пайку твердыми припоями предполагается использовать для получения вакуумно-плотных соединений, то недопустимо применение заполнителей, содержащих металлы с высоким давлением паров, таких как С(1. 2п,.Р, В или РЬ. Мало пригодны в качестве обычных вакуумных конструкционных материалов и такие металлы, как Р1, КЬ, Та, ЫЬ и Не, температуры плавления которых превышают 1700° С. Как правило, точка плавления металла-заполнителя (припоя) должна лежать, по крайней мере, на 100° ниже температуры плавления материала соединения. Этим требованиям удовлетворяют элементы или сплавы Си, А , Ли и N1. Именно сии наиболее часто используются для соединения вакуумных деталей Некоторые свойства наиболее характерных твердых припоев, выпускаемых в виде проволок, фольги, колец, порошков или паст, приведены в табл. 14. Дополнительные сведения о твердых сплавах и комбинациях [c.255]


    В лабораторной практике при выполнении различного рода экспериментальных работ существенное значение имеет возможность быстрой переделки вакуумных установок, а поэтому в качестве конструкционного материала для их изготовления часто используется стекло. Стекло обладает способностью легко принимать и сохранять любую нужную форму, при прогреве с его поверхности достаточно легко удаляются ранее адсорбированные газы, оно практически газонепроницаемо, а давление насыщенного пара стекла настолько мало, что не оказывает влияния па степень вакуума в системе. [c.31]

    Вследствие высокой температуры плавления и рекристаллизации молибден применяется в качестве конструкционного материала для изготовления деталей машин, работающих при высоких температурах. Молибден изготовляется из порошка в виде прессованных штабиков сечением 60 X 60 X 500 мм и в виде слитков, получаемых в вакуумных дуговых или индукционных печах. [c.292]

    В брошюре изложены основные физико-механические свойства конструкционных металлов и сплавов, рекомендованных к применению в вакуумных приборах и установках. Приведены свойства диэлектрических материалов и герметиков, применяемых в вакуумном приборостроении. Рассмотрены области применения конструкционных материалов и герметиков. Сформулированы основные требования, предъявляемые к конструкционным материала.м в вакуумном приборостроении. Рассмотрены также теплофизические воздействия на металлы вакуумных приборов. [c.2]

    Важнейшим требованием, предъявляемым к вакуумным системам, является герметичность. Незначительные количества газов, способные проникнуть внутрь вакуумной системы, могут резко изменить степень разреженности и часто сделать систему неработоспособной. Но не только герметичность и отсутствие натекания извне определяют качество вакуумной системы. Любой конструкционный материал, будь то металл, стекло, пластмасса или керамика, при определенных условиях может служить источником газа. Газ может быть растворен в металле нри его изготовлении или содержаться в неметаллических включениях, от которых несвободно абсолютное большинство сортов стали. Сорбированный газ тончайшей пленкой покрывает поверхность любой детали вакуумной системы. [c.401]

    Почти все используемые в химических производствах вещества оказывают разрушающее (коррозионное) воздействие на материал оборудования. Коррозионная устойчивость оборудования и трубопроводов является важнейшим показателем, определяющим их надежность, межремонтный пробег, затраты на ремонт. Поэтому разработке способов повышения коррозионной устойчивости уделяется большое внимание, начиная с проектирования и конструирования. Основные способы предотвращения коррозионного износа оборудования можно условно разделить на три группы подбор коррозионно-стойких конструкционных материалов, применение защитных покрытий, использование химических противокоррозионных методов. Последнюю фуппу способов используют, например, в первичной переработке нефтей, в которых содержатся агрессивные компоненты. Обессоливание, обезвоживание и защелачивание нефти, ввод ингибиторов коррозии в систему конденсации легких фракций позволяет сократить число аварийных неплановых остановок и увеличить межремонтный пробег атмосферно-вакуумных трубчатых установок (АВТ) до 1-1,5 лет. Даже вода может быть агрессивным компонентом. В кипятильниках, паровых котлах из воды выпадают содержащиеся в ней соли и осаждаются на теплообменных поверхностях, что может вызывать их разрушение. [c.306]

    Для наружного прогрева конструкционных элементов высоковакуумных систем сложной конфигурации (вакуумных камер, ловушек, запорной арматуры, коленчатых вакуум-проводов и т. п.) в процессе их обезгаживания применяют гибкие ленточные нагреватели, которые с успехом заменяют обычные печи нагрева, легко снимаются и допускают свободный доступ к узлам вакуумной системы. В качестве изоляционного материала в гибких нагревателях применяются устойчивые к высоким температурам кремнеземные материалы, которые получают методом кислотной обработки материалов из стекол определенного состава. Максимальная температура применения кремнеземного волокна при длительной эксплуатации достигает 1 000° С. [c.213]

    При оценке потенциальных способностей металлов к обезгаживанию удалением растворенных в них газов становится очевидным, что палладий и серебро не пригодны для использования в качестве конструкционных материалов для вакуумных систем. Наименьшую растворимость для водорода имеют А1, Ре, сталь и Си. Коэффициент диффузии этого самого мобильного среди прочих газов (Нг) в металлы при комнатной температуре равен 10 см .с [129]. Следовательно, в процессе прогрева системы выделение водорода значительно, однако оно становится пренебрежимо малым для целей осаждения пленок после охлаждения системы снова до комнатной температуры. Полностью удалить газы, растворенные в металле, только с помощью прогрева невозможно. Для этих целей необходима вакуумная плавка. Количество выделяемого газа обычно меньше объема металлического образца, но оно часто превышает 1 об. %. Это связано с тем, что растворимость при температурах изготовления самого материала больше, чем при комнатной температуре. [c.233]


    Вакуумные дуговые печи используются для выплавки качественных сталей - нержавеющих, конструкционных, электротехнических, шарикоподшипниковых жаропрочных сплавов, тугоплавких и высокореакционных металлов. Основные особенности конструкции печи приводятся ниже. Расходуемый электрод крепится на штоке, к которому присоединен отрицательный полюс источника постоянного тока. Шток электрода вводится в вакуумное пространство печи. Между концом электрода и прокладкой поддона кристаллизатора возникает электрическая дуга. Материал электрода под влиянием тепла дуги расплавляется и стекает в кристаллизатор, где затвердевает и из него постепенно формируется слиток. Электрод, служащий одним полюсом дуги, может быть расходуемым и нерасходуемым. Нерасходуемый электрод участвует в процессе только как проводник тока. Другой принципиально отличный тип вакуумной дуговой печи - печь для плавки в гарнисаже, особенностью которой является наличие водоохлаждаемого тигля, заполненного металлом. Стенки тигля покрыты коркой застывшего металла, отделяющего жидкий металл от стенок тигля. Благодаря этой корке (гарнисажу) выплавляемый металл не контактирует с материалом тигля и поэтому не загрязняется им. В плавильном пространстве при помощи системы вакуумных насосов (форвакуумных ротационных и либо бустерных, либо высоковакуумных паромасляных, соединенных последовательно с бустерным) поддерживается давление порядка 10-10- Па [7]. [c.17]

    Окись бериллия, как и сам металл, находит применение в ядерной технике в качестве замедлителя и отражателя нейтронов и как конструкционный материал, особенно в высокотемпературных реакторах. В традиционных областях применения значение окиси бериллия не только сохранилось, но и увеличилось как огнеупорный материал ВеО в ряде случаев незаменима. Это касается, в частности, изготовления тиглей для плавки металлов (Ве, U, Th, Ti), где используется такое уникальное свойство ВеО, как необычайно высокая теплопроводность наряду с огнеупорностью. Широко используется при конструировании индукционных печей и вакуумных нагревательных приборов. Весьма перспективным огнеупорным материалом является пористая керамика из окиси бериллия, получаемая пенометодом [51] и выдерживающая температуру 1750°. В связи с высокой устойчивостью к тепловому удару ВеО находит применение в авиации для изготовления лопастей газовых турбин и деталей реактивных двигателей. Важная область применения окиси бериллия — получение медно-бериллиевой лигатуры, используемой в производстве бериллиевых бронз. Применяется ВеО и как катализатор в некоторых органических синтезах. [c.188]

    Использование высокопористых углеродных материалов (пенококсы, пенографиты, материалы на основе углеродных и графитированных микросфер и волокон), отличающихся низкой теплоемкостью, в электропечах методического и общепромышленного назначения (индукционные и печи сопротивления, вакуумные и с инертной или восстановительной средой) позволяет в отдельных случаях резко увеличить их производительность за счет сокращения времени остывания, увеличения рабочего объема (из-за снижения объема теплоизоляции) и т. д. Так, в работе [146] отмечается, что в наиболее экономичной печи можно применять в качестве изоляции графитовый войлок. Последнему по теплофизическим свойствам несколько уступает пенококс, однако пенококс как конструкционный материал более удобен, ибо он хорошо обрабатывается, что позволяет изготавливать из него теплоизоляцию требуемой формы и размеров. При использовании же графитового войлока иногда необходимо создавать дополнительные конструктивные элементы [ 14б] . Все-таки применять графитовый войлок в качестве высокотемпературных уплотнений и упаковок предпочтительнее [149], так как он обладает значительно (в 2,5—3 раза) меньшим, чем пенококс, газоотделе-нием [146]1. [c.162]

    Тем не менее, все эти особенности не снижают ценности меди как весьма популярного материала вакуумной аппаратуры. Благодаря высокой электропроводности и наивысшей среди конструкционных мета1Щ10в теплопроводности медь оказывается незаменимым материалом для токоведуших и теплопроводящих деталей. А очень высокая пластичность отожженной меди позволяет широко использовать ее в качестве материала уплотнителей в разборных сверхвысоковакуумных фланцевых соединениях. Наконец, очень полезной для технологической практики оказалась близость термических коэффициентов линейного расширения меди и другого широко применяемого в вакуумной аппаратуре материала - коррозионностойкой аустенитной хромоникелевой стали 12Х18Н10Т. Это их свойство позволило не только успешно паять их между собой высокотемпературными припоями, но и при необходимости сваривать газодуговой сваркой. [c.140]

    Роль пластмассовых покрытий в современной технике трудно переоценить. Превосходная химическая стойкость, водостойкость, погодоустойчивость, стойкость к изменению температуры и другие свойства полимерных материалов позволяют использовать их для защиты от коррозии и агрессивного воздействия химических сред самого разнообразного химического оборудования, трубопроводов, строительных конструкций. Пластмассовые покрытия позволяют повысить срок службы обычных конструкционных материалов, а это означает, что в ряде случаев нет необходимости применять дорогостоящие нержавеющие стали и сплавы. Хорошие декоративные свойства пластмасс в сочетании с такими свойствами, как устойчивость к воздействию микроорганизмов, низкая газопроницаемость, отсутствие токсичности и т. д. дают возможность использовать пластмассы для создания различных слоистых материалов, успешно применяемых для декоративного оформления и упаковки. Покрытия на различные изделия и рулонные материалы могут быть нанесены разными способами в зависимости от физических свойств полимерного материала, а также от вида покрываемого изделия. Для создания покрытий полимерные материалы могут использоваться в виде расплавов, растворов, порошков, пленок. Одним из наиболее интересных является метод нанесения порошкообразного полимера в псевдоожижениом слое. Покрытия на основе высокомолекулярных эпоксидных смол на металлических деталях самого сложного профиля могут быть получены окунанием предварительно нагретой детали в ванну, в которой находится псевдоожиженная порошкообразная смола и отвердитель. Для нанесения покрытий на наружные и внутренние поверхности крупногабаритных конструкций разработаны различные конструкции многокомпонентных распылителей, с помощью которых можно наносить на поверхность как жидкие композиции, так порошковые и волокнистые наполнители. Несколько лет назад появились сообщения о вакуумном методе нанесения пленочных покрытий. Покрытия в этом случае образуются путем приклеивания под вакуумом полимерной пленки к поверхности изделия [235]. [c.195]

    Анализ марочного ассортимента жестких материалов выявил следующие четко выраженные тенденции за период 1960-1980 гг. расширение ассортимента происходило не за счет появления новых марок материала, а за счет более направленного применения каждой новой марки [66] за период с 1980 г. по настоящее время созданы материалы с новым комплесом свойств, значительно расширяющие сферу применения старого полимера. Например, были разработаны ПВХ композиции конструкционного назначения со стекловолокном для изделий с высокой теплостойкостью (100-110 С по сравнению с 74 °С для стандартных композиций), уменьшенной ползучестью, хорошей химической стойкостью и уменьшенной горючестью, а также относительно легкой перерабатываемостью (литьем под давлением в корпусе и опорные плиты вакуумных насосов и экструзией в трубы и профили). Свойства ПВХ композиций, армированных стекловолокном, приведены ниже (в числителе - для литья, в знаменателе - для экструзии)  [c.268]

    М. с. 1000—1600° с. При повышении т-ры значительная прочность сохраняется (рис.)- М- с. выплавляют, как правило, в вакуумных дуговых пли электроннолучевых почах. Полуфабрикаты изготовляют в виде прутков, профилей, труб, листов, фольги и проволоки. Слитки литого металла подвергают горячему прессованию при т-ре 1500° С, промежуточному отжигу в интервале т-р 1200—1500° С (в зависимости от состава сплава) и последующему деформированию прокаткой или волочением. Из М. с. изготовляют поковки массой до 1,1 т. При оптимальном режиме прокатки т-ра хладноломкости при изгибе близка к т-ре жидкого азота. М. с. как жаропрочные конструкционные материалы применяют для изготовления головных частей и сопел ракет, вкладышей сопел, упорных колец силовых установок, рулей передних кромок крыльевых сверхзвуковых самолетов, радиационных щитков п деталей крепления, эксплуатируемых ирп высокой т-ре, деталей и узлов турбин. Применение жаропрочных М. с. в ракетных двигателях позволяет повысить рабочую т-ру на 200—300° С, увеличить их мощность. Каропрочные М. с. используют и и атомно энергетике. Лит. Тугоплавкие материа.лы в машиностроении. Справочник. М., 1967 Мальцев М. В. Металлография тугоплавких редких и радиоактивных металлов и сплавов. М., 1971 Сплавы молибдена. М., 1975 Молибден. Пер. с англ. М., 1962 Агте К., В а ц е к И. Вольфрам и молибден. Пер. с чеш. М.—Л., 1964 Т и т ц Т., Уилсон Дж. Тугоплавкие металлы и сплавы. Пер. с англ. М., 1969. В. Н. Минапов. МОЛИБДЕНИРОВАНИЕ - диффузионное насыщение поверхности металлических изделий молибденом или нанесение на них покрытий из чистого молибдена. Диффузионное М. обычно осуществляют газо- и жидкофазным способами. При газофазном способе молибден переносится газообразными галогенидами молибдена (хлоридами, фторидами и т. п.), при жидкофазном — анионами молибдена, к-рые осаждаются на поверхности катода—изделия. При газофазном способе (способе порошков) используют чистые молибдено- [c.8]

    Для конструкционных материалов, работаюпд,их в вакууме, необходима высокая коррозионная стойкость, инертность по отношению к маслам и промывочным средствам, хорошая обрабатываемость с целью получения чистой и гладкой поверхности. Требования к низковакуумным и к высоковакуумным установкам различны. Низковакуумные установки проще в изготовлении, для них легче подобрать материал и выбрать конструкцию уплотнений. Рассмотрим подробнее некоторые материалы, обычно применяемые в вакуумной технике. [c.440]

    Представляет интерес высокотемпературное спекание плазмохимических порошков на основе 2гОг, так как такая керамика обладает высокой вязкостью разрушения, и может найти применение в качестве конструкционной [22]. Спекание проводили в вакуумной печи ПО "Эмитрон" с хромит-лантановыми нагревателями. Достижение высокой температуры спекания 1800°С позволило получить высокоплотный материал с хорошими механическими свойствами. [c.24]

    По сравнению с другими конструкционными материалами стекло обладает целым рядом исключительных свойств, которые часто делают его почти незаменимым. Это, во-первых, высокая химическая стойкость стекла, определившая его самое широкое применение в качестве материала для химической посуды. Во-вторых, это практически полная газонепроницаемость стекла, позволяющая изготавливать из него корпуса самых различных элементов вакуумной и газовой шшаратуры, в частности баллоны осветительных, приемно-усилительных, генераторных и т.п. ламп. И, наконец, прозрачность стекла, делающая его во многих случаях единственным материалом для смотровых окон в различных лабораторных и промышленных вакуумных и газовых установках. Сочетание же перечисленных достоинств стекла с хорошими диэлектрическими свойствами позволило широко использовать стекло для изготовления разнообразных металлостеклянных электрических вводов в установках, использующих вакуум или те или иные газовые среды. Однако эта область применения потребовала создания большой гаммы специальных сортов стекла, имеющих термический коэффициент линейного расширения, близкий к TKL того металла, с которым данное стекло должно соединяться. Значение TKL этих стекол входит в обозначение марки например, для стекла С49-1 а=4910 1/К. Основные физи-ко-механические свойства ряда электровакуумных стекол приведены в Приложении П5, более подробные сведения содержатся, например, в /5,7,15/. [c.23]

    Выбор конструкционных материалов. Этот вопрос является как бы ядром в процессе упаривания, поскольку материал должен работать в условиях высокой коррозионной активности и температурных напряжений. Наиболее жесткие условия складываются для процесса упаривания стоков ЭЛОУ под давлением В теплотехническом отношении процесс упаривания под давлением при температурах до 200°С по сравнению с вакуумным методом имеет ряд достоинств он сокращает металлоемкость, существенно снижает затраты тепла и электроэнергии. Однако, с другой стороны, при высоких температурах и давлениях возрастают коррозионные явления и температурная депрессия, снижается растворимость сульфата кальция и др. С повышением температуры коррозионная активность солей начинает резко возрастать. Так, присуто вующие в стоках ЭЛОУ хлориды магния и кальция начинают при температуре выше 100°С гидролизоваться с выделением соляной кислоты. При этом соляная кислота осуществляет две функции первую - растворяет карбонаты, бикарбонаты, гидроокиси металлов вторую - корродирует конструкционные материалы, из которых выполнена установка. Исследования, проведенные при температуре 200°С, давлении 20 ат, рН=5 в растворах солей, содержащих до 20% хлорида натрия, показали, что наибольшую коррозионную стойкость (общая коррозия и коррозионное растрескивание под напряжением) показала сталь 08Н2Н6М2Т (ЭП-54). Эту сталь можно использовать для изготовления основного технологического оборудования теплообменников, змеевиков печей, насосов, испарителей, арматуры. На рис,10-12 приведены технологические схемы упаривания [c.48]


Библиография для Вакуумные конструкционные материалы: [c.827]   
Смотреть страницы где упоминается термин Вакуумные конструкционные материалы: [c.446]    [c.568]    [c.677]    [c.452]    [c.594]   
Смотреть главы в:

Вакуумное нанесение тонких пленок -> Вакуумные конструкционные материалы




ПОИСК





Смотрите так же термины и статьи:

Конструкционные материалы



© 2024 chem21.info Реклама на сайте