Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка и осушка воздуха и кислорода

    Способность цеолитов одновременно адсорбировать пары воды и СО 2 можно использовать для решения очень важной промышленной задачи — создания защитных атмосфер, необходимых при обработке металлов, спекании металлокерамики, специальной пайке и т. п. (применение контролируемых защитных атмосфер позволяет регулировать содержание углерода в поверхностном слое стальных изделий и повышать усталостную прочность и долговечность деталей). Одновременно с парами воды и двуокисью углерода из воздуха под давлением при помощи цеолитов могут удаляться и углеводороды, в частности ацетилен. Кроме того, совместная адсорбция паров воды и СО 2 открывает перспективу для решения вопроса о тонкой осушке, об очистке некоторых газов, используемых в промышленности (воздуха, азото-водородной смеси, углеводородов и т. д.). Наряду с предварительной осушкой и очисткой воздуха цеолиты могут применяться и для очистки продуктов его разделения, например очистка аргона от кислорода и других примесей (азота, водорода и углеводородных газов). [c.111]


    Производство азота и кислорода из воздуха состоит из трех стадий очистки и осушки воздуха, сжижения воздуха и ректификации жидкого воздуха. [c.232]

    Практически технологический процесс разделения воздушной смеси с получением кислорода или азота включает последовательно следующие основные стадии очистку воздуха от пыли и механических примесей сжатие воздуха в компрессоре очистку сжатого воздуха от двуокиси углерода осушку сжатого воздуха сжижение и ректификацию воздуха для разделения на азот и кислород [13, 62]. [c.428]

    Если бы воздух был очищен от влаги (адсорбцией) и от двуокиси углерода (поглощением щелочным раствором) до подачи его в блок разделения, то схема установки для получения жидкого кислорода при давлении примерно 30 йта имела бы такой же вид, как схема, изображенная на фиг. 28. Однако с целью уменьшения размеров осушительных адсорберов осушка воздуха производится при температуре 278° К (фиг. 34). Щ.-лочную очистку воздуха от двуокиси углерода при давлении 30 ата целесообразно заменить адсорбционной, причем для получения прием-216 [c.216]

    Наметились перспективные области применения мембранной очистки газов извлечение и концентрирование водорода, разделение смесей СОг и СН4, осушка газов, обогащение и обеднение воздуха кислородом и т. д. В ближайшие годы мембранная технология очистки газов наиболее широко будет применяться в производстве синтетического аммиака. [c.86]

    Химический состав активной окиси алюминия — адсорбента обычно жестко не регламентируется. Такие иримеси, как окись кремния, обычно не изменяют характеристик продукта, даже если их содержание составляет несколько процентов. Наличие железа ухудшает товарный вид продукта, и потому его содержание обычно невелико (менее 0,2%). Существенное значение имеет содержание солей натрия присутствие щелочи понижает термическую стабильность адсорбентов и кислотность их поверхности (последнее отражается на качестве адсорбента, применяемого при осушке воздуха и очистке его от непредельных углеводородов в производстве жидкого кислорода). [c.101]

    Наряду с процессами осушки воздуха данный метод с успехом применяется для очистки воздуха от диоксида углерода, разделения воздуха на азот и кислород, что имеет огромное значение в различных областях человеческой деятельности. [c.402]


    Модификацией установки К-0,4 является азотно-кислородная установка АК-1,5, укомплектованная воздушным компрессором 4М10-40/70 и детандером ЗаД-18/40, работающим без смазки цилиндров. Эта установка также имеет блок очистки и осушки воздуха цеолитами. Предварительное охлаждение воздуха перед блоком очистки и осушки производится в теплообменнике отходящим азотом. Блок разделения воздуха имеет перлитовую изоляцию и предназначен для размещения вне здания. Производительность установки АК-1,5 составляет 215 м ч кислорода 99,7%-ной концентрации и 1500 М я азота 99,9995%-ной концентрации (содержит не более 0,0005% Ог). Удельный расход энергии 0,22— [c.177]

    В соответствии с технологической схемой процесс получения кислорода на этой установке включает следующие стадии 1) очистку воздуха от механических загрязнений 2) сжатие воздуха в компрессоре 3) очистку атмосферного воздуха от углекислоты 4) осушку воздуха  [c.69]

    А—основной (кислородный) цех Б—цех компрессии В—цех наполнения баллонов Г—цех очистки инертных газов Л—отделение газификации /—камера воздушных фильтров 2—воздушный турбокомпрессор 5—оборудование очистки и осушки воздуха 4—воздухоразделительный блок 5—кислородный газгольдер 5—< —кислородные компрессоры 5—блоки осушки кислорода —реципиенты (хранилища) высокого давления /7—редукторы кислорода У2 —наполнительные рампы —оборудование для очистки и обогащения криптона i i—установка для очистки аргона от кислорода /5—стационарная емкость жидкого кислорода  [c.150]

    Очистка воздуха от двуокиси углерода производится под избыточным давлением 12—-16 кгс см в декарбонизаторе 4, включенном после II ступени воздушного компрессора. Раствор щелочи для декарбонизатора приготовляется в баке 3. Сжатый в компрессоре воздух подвергается осушке в двух попеременно работающих баллонах блока осушки 5, заполненных активным глиноземом. После осушки воздух поступает в блок разделения 10 с колонной двукратной ректификации, где разделяется на кислород и азот. Жидкий кислород отбирается из кармана, припаянного ниже первой тарелки верхней колонны, и перекачивается плунжерным кислородным насосом 9 в теплообменник блока разделения 10, где кислород испаряется под избыточным давлением до 150—165 кгг сл -, охлаждая поступающий в теплообменник сжатый воздух. Баллоны наполняются газообразным кислородом через рампу 7. [c.167]

    ОЧИСТКА И ОСУШКА ВОЗДУХА И КИСЛОРОДА [c.379]

    В установках производительностью выше 30 применяется двукратная ректификация, в установках высокого давления — очистка и осушка воздуха цеолитами. Установки в высокой степени автоматизированы. Удельный расход энергии на установках высокого, среднего и низкого давления составляет соответственно 1,29—1,6 0,92—1 и 0,62—0,68 квт-ч/м кислорода. Для установок высокого давления в расход энергии включены затраты на сжатие кислорода [c.249]

    На стадии предварительного разделения газовой смеси этот способ используют при осушке воздуха, природного и конвертированного газов, а также других газовых смесей, применяя такие адсорбенты, как силикагель, алюмогель и синтетические цеолиты [64, 90]. В некоторых случаях одновременно с осушкой производится адсорбция из газовой смеси и незначительного количества других примесей, например СО2, Нг8 и углеводородов. При криогенных температурах метод адсорбции получил наибольшее распространение при очистке гелия, неона и водорода от небольших количеств азота, кислорода и метана, а также гелия от примесей неона и водорода. Этот метод применяется при очистке от примесей и других газов, таких как аргон, криптон и ксенон [16, 90]. [c.53]

    Отличительной особенностью установки является применение насоса жидкого кислорода вместо теплого газификатора, что позволило получить сухой кислород и уменьшить его потери, применение эффективного адсорбционного способа осушки воздуха наличие двух последовательно работающих декарбонизаторов, что улучшило степень очистки воздуха от СО2. [c.326]

    I — цеолитовый блок очистки и осушки воздуха 2 — теплообменник 3 — подогреватель воздуха 4 — насос жидкого кислорода 5 — подогреватель азота [c.164]

    Эксплуатация агрегатов очистки и осушки воздуха и кислорода [c.195]

    Очистка азота, применяемого в качестве защитной атмосферы. Инертный газ Д.Т1Я создания защитной атмосферы можно получать, связывая кислород воздуха сжиганием углеводородного топлива в этом воздухе. При процессе сгорания неизбежно образуется значительное количество двуокиси углерода и воды. Для многих областей применения, когда требуется практически чистый азот, эти компоненты необходимо удалить. Так, чистый азот может использоваться как инертный газ в химической и нефтеперерабатывающей промышленности для создания защитной подушки или для операции продувки. Чтобы удалить двуокись углерода и воду из такого генераторного азота, можно применить промывку моноэтаноламином с последующей осушкой твердыми осушителями.- Но предпочтительно удалять обе примеси одновременно адсорбцией на молекулярных ситах типа 5А. [c.88]


    Температура полдуха, поступающего иа очистку, К (°С). . . Точка росы (степень осушки воздуха), К (°С) Остаточное содержание в очнщасмом воздухе углекислоты, см /м ацетилена. .. Содержание кислорода в регенерирующем газе, % . [c.55]

    Очистка воздуха от двуокиси углерода производится под избыточным давлением 12—16 кгс1см в декарбонизаторе 4, включенном после II ступени воздушного компрессора. Раствор щелочи для декарбонизатора приготовляется в баке 3. Сжатый в компрессоре воздух подвергается осушке в двух попеременно работающих баллонах блока осушки 5, заполненных активным глиноземом. После осушки воздух поступает в блок разделения 10 с колонной двукратной ректификации, где разделяется на кислород и азот. Жидкий кислород отбирается из карл1ана, припаянного ниже пер- [c.162]

    Рабочее давление основной части воздуха кислородной установки КГ-ЗООМ составляет 6 ати и только небольшой поток воздуха сжимается до давления 90—100 ати. Благодаря этому расход энергии составляет около 0,85 квт-ч/нм кислорода, а с учетом сжатия кислорода для наполнения в баллоны до дайления 150—165 ати — 1,2 квт-чЫм . Расход каустика для очистки воздуха от двуокиси углерода также значительно меньше в связи с тем, что очистку в скрубберах проходит только 25% перерабатываемого в установке воздуха. Длительность рабочего периода установки составляет не менее 2 мес. Продолжительность пускового периода около 25 ч. Отогрев блока разделения производится осушенным в блоке осушки воздухом, подогретым в подогревателе до температуры не выше 100° С. [c.25]

    Схема технологической машины показана на рис. 41. Сжатый в компрессорной машине воздух поступает в ожижитель влаги 6 и охлаждается до температуры 278—280° К- При получении жидких кислорода и азота давление воздуха составляет 18—-20 Мн1м , при получении газообразного кислорода 13—14 Мн1м , при получении газообразного азота 15,5—18 Мн м . Охлаждение воздуха в ожижителе производится газообразными продуктами разделения. Из ожижителя воздух направляется в отделитель влаги 4, затем в один из баллонов, заполненных синтетическим цеолитом МаХ, который обеспечивает осушку воздуха до точки росы 203° К, очистку от двуокиси углерода до остаточного содержания не более 2 см м и практически полное удаление ацетилена при концентрациях, обычно наблюдаемых в воздухе. В режиме очистки один баллон работает 10 ч. Затем поток воздуха переключается на другой баллон, а первый подвергается регенерации адсорбента азотом в количестве 0,022—0,036 м сек, нагретым в электронагревателе 3 до температуры 653—673° К. Регенерация протекает примерно в течение 3 ч и заканчивается по достижении температуры регенерирующего газа на выходе из осушительного баллона не ниже 473° К. После регенерации адсорбент охлаждается в течение 6 ч тем же потоком азота при выключенном электроподогревателе. [c.56]

    Еще один важный процесс — совмещенная очистка от диоксида углерода и осушка воздуха перед его низкотемпературным разделением. Массовые компоненты воздуха (азот и кислород) различаются по температурам кипения на 11°. Разница достаточна для того, чтобы при температуре жидкого воздуха (примерно минус 190° С) получить их в чистом виде. Однако долговременная и, следовательно, экономичная работа установки разделения при столь низких температурах возможна только в том случае, если воздух,поступа-юцщй на сжижение и последующее разделение, будет содержать не более 1 мг/м воды и не более 5 мг/м диоксида углерода. При более высоких концентрациях отложения льда и твердой углекислоты быстро забьют низкотемпературную аппаратуру и ее придется часто останавливать на размораживание. В результате упадет средняя производительность установки и возрастут энергозатраты на получение единицы чистых газов. [c.44]

    Оснащение воздухоразделительных установок адсорбционными блоками осушки обеспечивает достаточно эффективную очистку воздуха от масла и продуктов его разложения. На Балашихинском кислородном заводе осуществление ряда мероприятий по защите аппаратов от масла, в том числе и установка блоков осушки, позволило снизить содержание масла в жидком кислороде с 0,1—0,8 мг1дм до незначительных количеств, изредка обнаруживаемых в виде запаха. [c.138]

    В нефтеперерабатывающей промышленности в качестве илсртного газа используется главным образом азот, получаемый двумя сиособами сжиганием топливного газа с минимальным избытком воздуха с последующей очисткой образо-вл ииегося дымового газа от оксидов углерода и осушкой разделением атмосферного воздуха на азот и кислород на воздухоразделитсльных установках прп низких температурах и высоких давлениях. [c.240]

    Адсорбционные установки с десорбцией сбросом давления начинают широко применяться не только при очистке водорода. Они с успехом применяются при разделении различных газовых смесей /107< Особенно большие успехи достигнуты в производстве кислорода адсорбционным раздмением воздуха /11,12/, при осушке газоа. Ожидается широкое применение способа в очистке природного газе /137  [c.173]


Смотреть страницы где упоминается термин Очистка и осушка воздуха и кислорода: [c.133]    [c.166]    [c.174]    [c.327]    [c.259]    [c.261]    [c.56]    [c.53]    [c.327]    [c.122]    [c.85]    [c.19]    [c.363]   
Смотреть главы в:

Получение кислорода Издание 5 1972 -> Очистка и осушка воздуха и кислорода




ПОИСК





Смотрите так же термины и статьи:

Кислород воздухе

Кислород осушка

Осушка

Осушка и очистка



© 2025 chem21.info Реклама на сайте