Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Осушка предварительная

    В промышленной практике на установках низкотемпературного разделения газов пиролиза нашли применение следующие методы осушки предварительная осушка охлаждением до точки росы О—5° С осушка твердыми сорбентами — силикагелем и активированной окисью алюминия осушка вымораживанием в кантующихся теплообменниках и, наконец, комбинации из перечисленных выше трех методов. В последнее время для осушки начинают применять молекулярные сита. [c.147]


    Наиболее установившейся в промышленной практике схемой осушки является комбинированная осушка предварительным охлаждением с последующей адсорбцией (рис. 89). Газ охлаждается в предварительном теплообменнике 1 до температуры несколько выше точки образования гидратов (10—15° С). Этим охлаждением достигается уменьшение нагрузки по влаге адсорбционных осушителей [c.148]

    Влажный бензол (свежий и возвратный) поступает в колонну азеотропной осушки, предварительно подогретый до 73° в теплообменнике теплом конденсации паров, идущих из колонны. [c.273]

    Необходимый для сжигания углерода кислород поступаем в фарфоровую трубку из бал,лона или газометра. Кислород для очистки и осушки предварительно пропускают через склянки Тищенко 1— с раствором едкого кали (300 г/л), 2 — с серной кислотой уд. в. 1,84 и 3 — с раствором едкого барита (100 г/л). [c.219]

    Несколько иная схема используется в процессе деметанизации при низком давлении. Сжатый до 3 МПа газ пиролиза после очистки от СО2 и НгЗ и осушки предварительно охлаждают в теплообменнике холодными продуктами, получающимися при разделении, а затем кипящим аммиаком или пропиленом. При этом из газа конденсируются углеводороды Сз и выше их направляют в деэтанизатор для отбора метан-этан-этиленовой фракции. Несконденсировавшийся в результате первичного охлаждения газ подают в систему теплообменников-конденсаторов для дополнительного охлаждения в результате из газа конденсируются углеводороды С и Сг. Этот конденсат в смеси с метан-этан-этиленовой фракцией, отбираемой из деэтанизатора, поступает в деметанизатор, работающий при 0,11—0,15 МПа. Путем орошения метаном, получаемым в холодильном цикле, в верхней части колонны поддерживают температуру минус 150 °С, а в нижней минус 83 °С. При разделении при низком давлении можно получить чистый метан и этиленовую фракцию с минимальным содержанием метана при этом число требуемых тарелок намного меньше, чем при других схемах разделения. Вследствие наличия каскадного холодильного цикла и применения низких температур для охлаждения газа пиролиза расход электроэнергии несколько больше (35—45 кВт-ч на 100 м газа), чем при разделении, осуществляемом при высоком переднем давлении. [c.76]

    А—приготовление угольной пасты Б—жидкофазная гидрогенизация В—предварительное гидрирование Г—бензинирование или расщепление Д—стабилизация Е—получение этана Ж—получение пропана 3—осушка газа И—получение бутана К—абсорбционная очистка газа (удаление аммиака) Л—производство газового бензина М—газоочистка (удаление СО и Н З) И—алкацидная очистка, молотковая дробилка 2—вращающаяся сушилка 3—бункер для сухого (4% НаО) угля с катализатором 4 —бак для затирочного масла 5—ластовый насос высокого давления 6—регенератор (теплообменник) / сепаратор Л—газоподогреватель 9—реактор 10—уровнемер 11—горячий сепаратор 12—центрифуга 3—печь полукоксования шлама 14—емкости для дросселирования 15—холодильник 16—продуктовый сепаратор 17—водоотделитель 18—циркуляционный насос 19—масляный абсорбер 20—детандер 21—алкацидный абсорбер 22—реактор с окисью железа (280°) для удаления сероокиси углерода 23—сборник среднего масла 24—дистилляционная колонна 25—водный абсорбер 26—бак для среднего масла 27—электрический подогреватель сборник бензина 29—емкости для среднего масла Б  [c.35]


    Реакции изомеризации обратимы, поэтому равновесное содержание изомеров в смеси зависит от температуры процесса. Начинается изомеризация при 100—150°С, но скорости реакций при этом слишком низки. Для их повышения используют высокоактивные катализаторы и повышенные температуры (300— 400 °С). Для предотвращения разложения углеводородов и отложения кокса на катализаторе процесс осуществляют в присутствии водорода под общим давлением до 3—4 МПа. Применение высокоэффективных платиновых и палладиевых катализаторов предъявляет жесткие требования к качеству сырья и водородсодержащего газа. Диоксид углерода, влага и особенно сернистые соединения дезактивируют катализаторы. Поэтому требуется предварительная осушка и очистка водородсодержащего газа и сырья (рис. 69). [c.219]

    Опасность возникновения аварий при синтезе ТИБА может быть вызвана повышенным содержанием кислорода и влаги в применяемом азоте. Поэтому газообразный азот из общезаводской сети перед поступлением в производство ТИБА предварительно подвергают фильтрации и осушке. Азот, пройдя тканевые фильт- [c.152]

    Чрезвычайно важным условием безопасной транспортировки газов по трубопроводам в зимних условиях является их предварительная осушка с тем, чтобы предотвратить конденсацию или вымораживание влаги и последующую закупорку проходного сечения и разрушение элементов трубопроводов. [c.301]

    Для подавления кислотной функции катализатора свежий водород и циркулирующий газ предварительно подвергают осушке на цеолитах типа МаА в адсорбере 14. Концентрация водорода в циркулирующем газе составляет 80—85 % (об.), расход водорода на процесс составляет 0,1—0,3 % (масс.) на сырье. Катализатор регенерируют каждые 3—4 мес. путем выжига кокса. [c.45]

    В случае дальнейшей низкотемпературной ректификации или каталитической переработки фракций, получаемых на установке, в присутствии чувствительных к влаге катализаторов, газы необходимо предварительно осушить (во избежание образования гидратов или льда, а также коррозионного поражения оборудования). Осушку газов (на схеме также не показана) осуществляют методами абсорбции водным раствором диэтиленгликоля или адсорбции, на силикагеле, оксиде алюминия или цеолитах. [c.58]

    Изучение основных кинетических закономерностей процесса низкотемпературной изомеризации н-пентана проводилось на алюмоплатиновом катализаторе, содержащем 10% хлора [37]. Исходные углеводороды и водород подвергались очистке и осушке, катализатор перед проведением опыта хлорировался обработкой в газовой фазе парами четыреххлористого углерода. Предварительными опытами, в которых линейная скорость изменялась от 0,117 до 0,234 м/с, а размер зерна от 2-3 до 0,5-1 мм, было показано, что при размере зерна катализатора 0,5-2 мм и линейной скорости потока 0,188 м/с реакция протекает в кинетической области. [c.24]

    В качестве источника водорода в процессе изомеризации используется водородсодержащий газ каталитического риформинга с объемным содержанием водорода 80%. В состав блока изомеризации входят следующие установки предварительного фракционирования сырья, азеотропной осушки н-пентановой фракции, изомеризации н-пентана, адсорбционной осушки циркулирующего газа, ректификации продуктов изомеризации. [c.150]

    Блок изомеризации пентан-гексановая фракция подается на смешение с циркулирующим водородсодержащим газом, нагревается в теплообменнике 30 и печи 20 и поступает в реактор 21, где на катализаторе ИП-62 осуществляется процесс изомеризации н-пентана и н-гексана в углеводороды изостроения. Газопродуктовая смесь после выхода из реактора охлаждается в теплообменнике 30, воздушном 32 и водяном 33 холодильниках и поступает в сепаратор 22 на разделение. Часть водородсодержащего газа выводится из системы, а в систему добавляется свежий водородсодержащий газ, который предварительно подвергается осушке в адсорбере на молекулярных ситах и поступает на прием компрессора 23 для обеспечения циркуляции водородсодержащего газа и в узел смешения с сырьем. [c.156]

    Указанный метод позволяет извлекать тяжелые углеводороды даже при очень малом их содержании в газе. К преимуществам угольной адсорбции относится также возможность переработки сырого газа без предварительной его осушки. Метод не применим к газам, содержащим сернистые соединения. Последние на активной поверхности способны окисляться до серы, загрязняя этим адсорбент. [c.31]

    Газы пиролиза перед выделением из них этилена должны подвергаться очистке от сероводорода, окиси и двуокиси углерода и ацетилена. Кроме того, они должны быть осушены. Напболее часто для осушки применяются твердые адсорбенты — активированная окись алюминия, боксит или силикагель. На многих установках с целью уменьшения нагрузки на твердые осушители газы пиролиза предварительно вымораживают. [c.55]


    Фирма Галф (США) с этой же целью перед подачей в твердый осушитель газа проводит его предварительную осушку ди-или триэтиленгликолем. При использовании триэтиленгликоля точка росы понижается до 2—4°. [c.55]

    Для улучшения качества продуктов и условий эксплуатации оборудования газоперерабатывающих заводов углеводородные газы предварительно подвергают очистке от механических примесей, (взвешенных частиц пыли, песка, продуктов коррозии газопроводов и т. д.), осушке и, наконец, очистке от сероводорода и двуокиси углерода. [c.153]

    Способность цеолитов одновременно адсорбировать пары воды и СО 2 можно использовать для решения очень важной промышленной задачи — создания защитных атмосфер, необходимых при обработке металлов, спекании металлокерамики, специальной пайке и т. п. (применение контролируемых защитных атмосфер позволяет регулировать содержание углерода в поверхностном слое стальных изделий и повышать усталостную прочность и долговечность деталей). Одновременно с парами воды и двуокисью углерода из воздуха под давлением при помощи цеолитов могут удаляться и углеводороды, в частности ацетилен. Кроме того, совместная адсорбция паров воды и СО 2 открывает перспективу для решения вопроса о тонкой осушке, об очистке некоторых газов, используемых в промышленности (воздуха, азото-водородной смеси, углеводородов и т. д.). Наряду с предварительной осушкой и очисткой воздуха цеолиты могут применяться и для очистки продуктов его разделения, например очистка аргона от кислорода и других примесей (азота, водорода и углеводородных газов). [c.111]

    Нефтяной газ давлением 0,14 МПа сжимают компрессором до 2,1— 6,9 МПа (в зависимости от давления природного газа), после чего смесь газов направляют на стадию предварительной обработки (осушка, отделение брызг, тумана, твердых частиц, ири необходимости нагрев). Смешанный поток поступает на мембранную часть установки, работающую при давлении 2,1—6,9 МПа в напорном канале и 0,34—0,96 МПа —в дренажном. Ретант (10—30%-й) после доочистки абсорбционным методом до концентрации СО2 2—3% (об.) направляют потребителю. Пермеат, содержащий более 95% (об.) диоксида углерода, смешивают с выделившимся после регенерации абсорбента газовым потоком и после компримирования вводят в скважину. От 80 до 93% всей [c.299]

    Едкое кали и едкий натр. Эти вещества используют для осушки газов в тех случаях, когда необходимо избавиться от примесей кислого характера, например от хлористого водорода, сернистого газа. Едкие щелочи пригодны для предварительной сушки органических соединений основного характера, в частности аминов, а также простых эфиров. При сушке простых эфиров они одновременно удаляют пероксиды. Едкое кали относится к сильным осушителям, а едкий натр обладает средней осушающей способностью. [c.174]

    К особенностям би - и особенно полиметаллических катализаторов относятся необходимость обеспечения чистоты сырья риформинга по содержанию серы и осушки циркуляционных газов риформинга. Кроме того, обязательными условиями являются предварительная прокалка катализатора и использование на установках риформинга азота вместо инертного газа. [c.21]

    Технологическое оформление процесса аналогично технологическому оформлению производства этилбензола. Бензол подвергается азеотропной осушке в насадочной колонне. Сухой бензол предварительно охлаждается в оросительном холодильнике и подается в нижнюю часть алкилатора, туда же вводится жидкий комплекс хлористого алюминия и пропан-пропиленовая фракция. [c.307]

    Концентрация гликоля, в свою очередь, зависит от эффективности его регенерации. В промысловых установках обычно применяется регенерация гликоля при атмосферном давлении. При температуре в ребойлере около 204,4° С можно получить. 98—98,7%-ный ТЭГ. На рис. 155 показана зависимость депрессии точки росы газа от скорости циркуляции ТЭГ различной концентрации. Эти данные получены на промышленной установке осушки газа, в абсорбере которой имеется четыре тарелки. При обычной температуре контакта в таком абсорбере можно понизить точку росы газа на 30,6—39° С. Такая депрессия предотвращает гидратообразование в газосборных сетях и зачастую является достаточной для нормальной транспортировки газа по магистральным газопроводам, если газ перед подачей на осушку в абсорбер был охлажден до обычной температуры. Предварительное охлаждение газа с помощью атмосферного воздуха или воды в градирнях — самый дешевый способ дегидратации газа, если в результате охлаждения удается понизить температуру газа на 5—6° С и более. [c.230]

    Технологическая схема хлорирования в газовой фазе состоит из тех же стадий, что и при жидкофазном хлорировании. Подготовка ))еагентов заключается в испарении жидкого хлора, предварительном нагревании газообразного хлора, осушке реагентов концентрированной серной кислотой или адсорбентами, смешении реагентов друг с другом и с рециркулятом. В случае синтеза аллил-и металлилхлорида исходные углеводороды испаряют и подогревают до нужной температуры. [c.121]

    Активированная окись алюминия снижает содержание влаги в природном газе еще более эффективно, поэтому она нашла широкое применение особенно на крупных установках очистки природного газа. Процесс адсорбции протекает под высоким давлением, иногда с внешним охлаждением для отвода выделяющегося тепла. Влагосодержание насыщенного адсорбента равно 9—И об. %, его осушка осуществляется путем пропускания через слой адсорбента противотока газа, предварительно нагретого до температуры порядка 300°С. Можно использовать и другие осушители, например молекулярные сита или цеолиты, которые позволяют выводить влагу с одновременной очисткой газа от углеводородов и кислых газов, что зависит от типа сита и конкретных рабочих условий [10]. Однако условия регенерации в этом случае, как правило, более жесткие, чем для окиси алюминия. I [c.30]

    Если в лаборатории нет вакуум-насоса, то обезвоживают тригидрат перхлората магния при 170°С в струе воздуха при помощи водоструйного насоса, присоединенного через хлоркальциевую трубку к колбе, в которой осущается перхлорат магния. Воздух для осушки предварительно пропускают через колонку с безводной серной кислотой и пяти-оксидом фосфора. Полученный препарат хранят в банке с притертой пробкой, залитой парафином, или в запаянных ампулах. [c.54]

    Автоматический блок осушки воздуха А ЮМ предназначен для осушки воздуха до точки росы (от 333 до 353 К), т. е. до влагосодержания 0,177—1,05 г/м . В состав блока автоматической осушки воздуха входят две осушительные башни, воздухонагреватель, пять переключающих трехходовых клапанов, два обратных клапана, щит управления, воздушные и водяные коммуникации, электронный золотник и три электропневматических клапана. Воздух, поступающий на осушку, предварительно проходит очистку от пыли, капельной влаги и масла. Он должен иметь температуру 393—398 К. В качестве адсорбента (поглотителя влаги) для осушки воздуха в башнях используют сели-кагель. После 8 ч работы адсорбирующие свойства селикагеля снижаются и башню ставят на регенерацию. В работу включают другую башню с восстановленным селикагелем. Регенерация селикагеля осуществляется воздухом, нагретым в воздухоподогревателе до 503 К- Продолжительность процесса регенерации — 3 ч. [c.84]

    Необходимый для сжигания углерода кислород поступает в фарфоровую трубку В из баллона пли газометра. Кислород для очистки и осушки предварительно пропускают через склянки Тищенко 1 — с раствором КОН (300 г/л),, 2 — с НгбОл (уд. в. 1,84) и 5 — с раствором Ва (ОН) 2 (100 г л). [c.255]

    Оба раствора насыщают сернистым ангидридом. Для этого склянку с растворо.м (как иодпиридиновым, так и иодацетатным) плотно закрывают резиновой пробкой с двумя трубками. Одна трубка доходит до дна склянки, а вторая (короткая) трубка служит для отвода газа. Взвешивают всю склянку на технических весах, помещают в сосуд со льдом, и подсоединяют источник сернистого газа, которым может служить или баллон со сжатым SO2 или аппарат для получения SO2 разложением сульфита натрия концентрированной серной кислотой. В обоих случаях сернистый газ для осушки предварительно пропускают через два поглотителя с концентрированной серной кислотой. Насыщение ведут до тех пор, пока привес не станет равным 60 г для иодпиридинового раствора и 23 г для иодацетатного раствора. Затем раствор доливают метанолом до объема 1 л, перемешивают и сохраняют в герметически закрытой склянке из темного стекла. [c.24]

    Как видно из графика влагосодержания природного газа, количество влаги зависит от давления и температуры. При контакте газа с водой повышение температуры или снижение давления увеличивает влажность газа. Понижение температуры прп постоянном давлении уменьшает влажность вследствие конденсации влагн. На этом и основана осушка газа охлажденнег. . Нижний предел температуры охлаждения газа ограничивается условиями гидратообразования. Этот метод используется и установках НТС с впрыском ингибиторов гидратообразования п для предварительного удаления основного количества влаги при иримепеннн других методов осушки. [c.139]

    Метод естественного иснарения хотя бы части жидких отходов, заполня10ш,их шламовый амбар, прост и доступен, ио мало-ириемлем из-за чрезмерной длительности. Он может быть реко-ысидовак лишь для предварительной осушки амбаров. [c.198]

    Гидроочищенное сырье подвергается осушке в колоннах К-1 или К-2, а эатем смешивается с водородсодержащим газом и проходит через теплообменник Т-1 и печь П-1. Нагретое и испаренное сырье поступает в реакторный блок, который состоит из трех адсорберов - К-3, К-4, К-5, работающих по сменно-циклическому графику. В каждом из них последовательно протекают стадии адсорбции, продувки и десорбции. Сырье поступает в тот из адсорберов, в котором проводится стадия адсорбции (на рис. 1.4 это К-3). Из адсорберов выходит денормализат, который после очистки выводится с установки. После окончания адсорбции проводится продувка. В адсорбер подается аммиак, предварительно подогретый в печи /7-2. При продувке с внешней поверхности гранул цеолита удаляются неселективно адсорбированные углеводороды. Продукт после продувки объединяется с денормализатом. [c.10]

    Открывают крышку 20 сосуда I и помещают в него предварительно размельченный гидрид кальция в количестве 0,1 см" прн испытании осушенного масла или 1 см при испытании неосу-шенного масла. Затем из сосуда II в сосуд I сливают 0 мл испытуемого масла для осушки сосуда I (промывка его не обязательна), закрывают крышку 20 при вращенрш и фиксируют это положение резиновым кольцом. [c.160]

    Воздух после сжатия в компрессоре до давления 20—22 Мн/м (200—220 кГ1см ) проходит блок осушки и следует в межтрубное пространство рекуперативного теплообменника 1 для предварительного нагрева. Затем [c.126]

    В промышленности приняты следующие процессы жидкофазный процесс синтеза этилбензола на катализаторе AI I3. Процесс ведут в стальных колоннах, облицованных специальными антикоррозионными материалами, реакция идет при температуре кипения реакционной смеси (80—100°С) и атмосферном давлении. В качестве сырья используется бензол со степенью чистоты пе -ниже 99%. Твердый хлорид алюминия прибавляется к реакционной смеси и -в реакторе образуется соответствующее комплексное соединение. Бе-нзол-сырье и бензол-рециркулят после предварительной осушки подаются в реактор. Хлористый водород или хлористый этилен также добавляются в реактор. Жидкие продукты из алкилатора охлаждаются и направляются в отстойник, где -каталитический комплекс отделяется и возвращается в алкилатор. Алкилат промывается водой, затем 20%-пой водной щелочью для нейтрализации НС1, после чего разделяется на -индивидуальные компоненты на стадии ректификации. [c.266]

    Молекулярные сита типа 13Х могут применяться для одновременпой очистки и осушки жидкостей. Если содержание сернистых соединений в осушаемой жидкости невелико, то размеры слоя цеолита 13Х такие же, как и слоя окиси алюминия. Особенно эффективно применение молекулярных сит 13Х для тонкой очистки ншдкостей после предварительной грубой ш,елочной очистки. [c.266]

    При продувке воздухом влага из масла удаляется полностью, испарение влаги происходит главным образом в поверхностном слое масла, а воздух, поступая в газовое пространство резервуара, понижает там концентрацию водяных паров, что также способствует испарению влаги, с поверхности масла. Перемешивание масла воздухом ускоряет поступление микрокапель воды, содержащихся в масле, в зону испарения. Продувку масел воздухом ведут при 80 °С. С понижением температуры масла способность воздуха поглощать влагу резко падает и продолжительность обезвоживания значительно увеличивается, а при повышении температуры существенно возрастает вероятность вспенивания масла, что может привести к его выбросу из резервуара. Процесс обезвоживания масла можно ускорить, если снизить влагосодержание воздуха путем его предварительной осушки. Наиболее глубокую осушку воздуха обеспечивают адсорбционные методы. [c.132]

    Разбавленный омыленный продукт подвергают предварительной очистке на центрифугах первой ступени, после чего направляют на вакуумную колонну для осушки от влаги. Сушка присадки в колонне проводится прп остаточном давлении 0,072— 0,092 мПа и температуре не более 130°С. После сушки присадку подвергают очистке на центрифугах второй ступени. Присадка ИХП-101 выпускается со SnaKOiM качества по ТУ 38-001220—75. [c.229]

    После осушки циркуляционный газ направляется на всасывание компрессора ТК-601, который направляет водородсодержащий газ па сл)ешение с гидрогеннзатом (на схе.ме ие показано). Избыточный водородсодержащий газ с нагнетания компрессора поступает в тракт предварительной гидроочистки. [c.60]

    По назначению трубчатые печи технологических установок каталитического риформннга бензинов разделяются на следующие группы реакторные для нагрева газопродуктовой смеси перед реакторами предварительной гидроочисткн и риформинга стабилизации для нагрева нижнего продукта стабилизационной колонны отпарки для нагрева нижнего продукта отпарной колонны в блоке предварительной гидроочистки и осушки для нагрева газа на стадии регенерации. [c.155]

    Исходные вещества. Технический бензол или другой ароматический углеводород, применяемый для алкилирования, нужно предварительно осушать, для чего используют отгонку воды в виде азеотропной смеси с ароматическим углеводородом (бензол или толуол). При такой азеотропной осушке содержание влаги снижается до 0,002—0,005%. Фракции низших олефинов поступают с газоразделительных установок пиролиза или крекинга до-статсчио сухими, ио нередко содержат различные иримеси, ведущие к повышенному расходу реагентов и катализатора, а также к образованию побочных веществ, от которых иногда трудно очистить целевой продукт (С2Н2 или его гомологи, бутадиен, другие олефины). Нередко очистку фракций от этих веществ не проводят, допуская наличие 2—3% (об.) указанных примесей, но значительно лучшие результаты получаются, когда количество этих примесей снижено примерно в 10 раз. Более тонкая очистка фракций от ненасыщенных веществ для алкилирования не требуется, что в еще большей степени относится к примесям парафинов. Очевидно, что оптимальная степень очистки фракций должна определяться экономическими расчетами. [c.251]

    Особенно жесткие требования предъявляют к чистоте бензола. В нем должны отсутствовать сернистые и ненасыщенные соединения, а также влага, остаточное содержание которой не должно превышать 0,0027о (масс.). Для этог исходный и возвратный бензол подвергают предварительной осушке, используя отгонку воды в виде азеотропной смеси с ароматическим углеводородом. Содержание воды в бензоле после азеотроПной перегонки можно снизить до 0,002—0,006% (масс), что вполне достаточно для успешного проведения процесса. Однако, целесообразно совмещать азеотропную ректификацию с доосуш-кой бензола на активированном оксиде алюминия, так как содержание влаги в бензоле снижается при этом до 0,0005% (масс.), что уменьшает расход AI I3 до 7—8 кг на 1 т этил-бензола. i [c.231]


Смотреть страницы где упоминается термин Осушка предварительная: [c.93]    [c.50]    [c.495]    [c.79]    [c.304]    [c.34]    [c.58]   
Регенерация адсорбентов (1983) -- [ c.8 ]




ПОИСК





Смотрите так же термины и статьи:

Осушка



© 2025 chem21.info Реклама на сайте