Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография на обычных адсорбентах

    Адсорбция лежит в основе метода разделения компонентов смесей, называемого хроматографией. Хроматографическое разделение происходит при движении подвижной фазы (раствор, газовая смесь) относительно другой неподвижной фазы (обычно адсорбент или инертный носитель, пропитанный жидкостью) вследствие различного сродства разделяемых веществ с фазами. [c.40]


    Колоночная хроматография. Для адсорбционной, распределительной и ионообменной хроматографии обычно применяют колонки, изготовленные из стекла, у которых отношение длины к диаметру находится в пределах 40—100. В нижнюю часть колонки помещают стеклянную вату в виде тампона, а затем загружают адсорбент, суспендированный в растворителе. При этом адсорбент должен заполнять колонку с равномерной плотностью (рис. 38). [c.157]

    В случае газо-адсорбционной хроматографии обычно пользуются не концентрацией с данного компонента в объеме адсорбционного слоя, а количеством адсорбированного вещества на единицу массы адсорбента а или на единицу его поверхности а=а/з (з—удельная поверхность, см. стр. 439—441). Это вызывается, во-первых, тем, что в адсорбционных опытах непосредственно измеряется не концентрация с , а адсорбированное количество а и, во-вторых, тем, что для адсорбционных слоев на неоднородных поверхностях величина для разных частей поверхности не постоянна. Поскольку мы ограничиваемся здесь областью применения изотермы адсорбции Генри и поскольку мы можем рассматривать величину Сд как среднюю для единицы массы или единицы поверхности адсорбента, то (см. стр. 440) [c.560]

    За последние годы широкое применение для анализа газообразных и жидких смесей получил хроматографический газовый анализ. Для разделения сложных углеводородных и других органических смесей особенно широко применяют газо-жидкостную хроматографию. В результате особенностей адсорбционного действия цеолитов их можно эффективно использовать для диализа сложных углеводородных смесей в сочетании с разделением на обычных адсорбентах. Как известно, но мере увеличения углеродных атомов в молекуле растет число возможных изомеров углеводорода, например углеводороды Сд—Сц, входящие в состав керосинов, имеют десятки изомеров. Определить все эти компоненты обычным хроматографическим анализом не представляется возможным, тем не менее с помощью цеолитов подобные задачи можно решать. [c.115]

    Селективность газоадсорбционного варианта хроматографии обычно гораздо выше, чем газожидкостного. Однако реализации этой высокой селективности ГАХ мешала низкая эффективность газоадсорбционных колонн. По мере увеличения однородности поверхности адсорбентов и усовершенствования способов ее модифицирования, а также методов синтеза новых, более однородных адсорбентов с конца 50-х годов началось развитие газоадсорбционного варианта хроматографии, приведшее к созданию высокоэффективных капиллярных колонн, наполненных небольшими зернами адсорбентов с поверхностью, близкой к однородной. В этом курсе будет рассмотрена газоадсорбционная хроматография не только как высокоселективный и достаточно эффективный метод анализа сложных смесей и как удобный метод изучения адсорбции, но и как важный способ изучения межмолекулярных взаимодействий, а также как экспериментальная основа нового метода определения некоторых параметров структуры молекул. [c.9]


    Между этими крайними случаями имеется множество промежуточных. Соприкосновение раствора полимера с поверхностью даже непористого тела может привести к сильной или слабой адсорбции в зависимости от химии поверхности твердого тела, определяющей межмолекулярное взаимодействие с адсорбентом как звеньев макромолекул, так и молекул растворителя. Здесь сказываются те же факторы, влияние которых на адсорбцию из растворов и хроматографию обычных молекул было рассмотрено в лекциях 14, 16 и 17 для адсорбции и хроматографии молекул обычных размеров. Однако степень конформационной подвижности макромолекул зависит от разветвленности цепей, возможности и характера их сшивки, а также взаимной ассоциации, значение которых быстро возрастает с увеличением молекулярной массы полимера. Большое значение имеет распределение и природа функциональных групп в макромолекулах. [c.333]

    Тонкослойная хроматография. Этот способ разделения веществ основан на адсорбционной, распределительной или обменной хроматографии Обычно эти процессы протекают совместно. Тонкослойная хроматография очень похожа на бумажную, но вместо листа бумаги используют тонкий слой порошкообразного адсорбента. Для этого на прямоугольную стеклянную пластинку наносят тонкий слои (обычно 2—3 мм) гидроокиси алюминия или другого подходящего адсорбента на линии старта помещают исследуемые образцы и свидетели . Затем пластинку помещают в слегка наклонном положении, чтобы нижний конец, вблизи которого находится линия старта, был погружен в растворитель. Через некоторое время фронт растворителя подойдет к верхнему концу пластинки тогда проявляют пятна разделившихся веществ либо специальными краси- [c.147]

    Адсорбционные материалы после проведения хроматографии и элюирования полностью дезактивируются, так как их поверхность оказывается занятой молекулами элюента или невымытых компонентов смеси. Для того чтобы адсорбент можно было снова использовать, все вещества должны быть с него удалены и его следует снова активировать. При этом необходимо учитывать, что большинство обычных адсорбентов регенерировать невыгодно, так как промывание их органическими растворителями и другие операции, связанные с регенерацией, обходятся дороже, чем новый адсорбент. Кроме того, всегда существует опасность неполного удаления загрязнений с регенерированного адсорбента. [c.350]

    Новым вариантом адсорбционной хроматографии является проточная хроматография, которая по сравнению с классическим вариантом имеет ряд преимуществ. При выборе адсорбента, растворителя и приготовления хроматографической колонки для проведения проточной хроматографии обычно руководствуются теми же соображениями, что и при хроматографировании по методу Цвета. Различие этих методов заключается в том, что в случае проточной хроматографии процесс не оканчивается на стадии проявления хроматограммы, а продолжается дальше. Индивидуальные вещества постепенно вымываются в фильтрат, где собираются в отдельные приемники. Как правило, для того чтобы элюировать все компоненты разделяемой смеси, необходимо применять не один, а ряд растворителей, используемых последовательно в порядке их расположения в элюотропном ряду-В настоящее время проточная хроматография является наиболее широко распространенным видом адсорбционной хроматографии. [c.362]

    Получение чистых солей рубидия и цезия в промышленных масштабах принципиально возможно как при применении классической хроматографии (т, е. чисто адсорбционных процессов), так и при помощи ионообменной хроматографии, при которой вместо адсорбентов используют органические и неорганические иониты. Между этими двумя хроматографическими процессами нельзя провести четкой границы, так как обычные адсорбенты в известной степени действуют также, как иониты, а на собственно ионный обмен часто накладывается адсорбция и гидролиз [361, 362]. [c.344]

    Четкой грани между этими двумя методами, однако, провести нельзя, так как обычные адсорбенты часто действуют так же, как иониты, а на ионитах частично имеет место физическая адсорбция. Несмотря на это, ионообменная хроматография обладает существенными специфическими особенностями и должна рассматриваться как самостоятельный раздел хроматографического метода. [c.61]

    В качестве адсорбентов при адсорбционной хроматографии обычно пользуются бесцветными или слабо окрашенными веществами, но в некоторых случаях, в частности при поглощении из водных или спиртовых растворов, целесообразнее применять активированный уголь. Наиболее распространенным адсорбентом является окись алюминия реже применяются силикагель, активные глины, а также углекислые и сернокислые соли щелочноземельных и щелочных металлов. Хотя последние обладают очень слабой адсорбционной способностью, но они удобны вследствие их растворимости в воде, благодаря чему значительно облегчается выделение адсорбированных веществ. [c.230]


    В качестве носителя при распределительной хроматографии обычно применяют силикагель, реже крахмал или целлюлозу, т. е. адсорбенты полярного характера. Ясно, что в этих условиях неподвижной фазой должен быть более полярный растворитель в противном случае произойдет вытеснение растворителя из пор адсорбента. К сожалению, воду, являющуюся одним из наиболее полярных растворителей, далеко не всегда можно применять в ка- [c.231]

    Явления ионного обмена играют известную роль также и в-адсорбционной хроматографии. Такие адсорбенты, как окись алюминия, активные глины и т. п., обычно содержат незначительную примесь окислов щелочных и щелочноземельных металлов и в зависимости от характера предварительной обработки (стр. 222). могут служить либо слабыми катионитами, либо слабыми анионитами (амфолиты). [c.236]

    Распределительная хроматография. Этот метод разделения основан на распределении вещества между более полярной стационарной фазой (обычно водой), находящейся на поверхности адсорбента, и менее полярной (органической) подвижной фазой, содержащей смесь разделяемых веществ. Основные принципы разделения и выбора системы растворителей такие же, как в методе противоточного распределения (см. стр. 24). Обычные адсорбенты — силикагель, кизельгур, крахмал и целлюлоза. [c.19]

    Адсорбенты для аффинной хроматографии обычно состоят из трех ковалентно-связанных компонентов, нерастворимого носителя, ножки (спейсера) и специфического лиганда. [c.444]

    В качестве адсорбентов при адсорбционной хроматографии обычно пользуются бесцветными или слабо окрашенными веществами, но в некоторых случаях, в частности при поглощении из водных или спиртовых растворов, целесообразнее применять активированный уголь. Наиболее распространенным адсорбентом является окись алюминия реже применяются силикагель, активные глины, искусственные силикаты, окись магния, гидрат окиси [c.296]

    В качестве носителя при распределительной хроматографии обычно применяют силикагель, реже крахмал или целлюлозу, т. е. адсорбенты полярного характера. Ясно, что в этих условиях неподвижной фазой должен быть растворитель более полярный, чем применяемый в качестве подвижной фазы в противном случае произойдет вытеснение растворителя из пор адсорбента. К сожалению, воду, являющуюся одним из наиболее полярных растворителей, далеко не всегда можно применять в качестве неподвижной фазы, так как в большинстве случаев органические вещества лучше растворимы в органических растворителях, чем в воде. Между тем желательно, чтобы коэффициент распределения адсорбируемого вещества между неподвижной и подвижной фазами был больше единицы, так как в этом случае при проявлении хроматограммы достигается лучшее разделение зон. [c.298]

    Основными физико-химическими характеристиками адсорбентов являются, с одной стороны, их структурные характеристики, часто не зависящие или мало зависящие от свойств адсорбирующихся веществ (удельная поверхность, пористость) и, с другой стороны, свойства, определяемые в основном природой системы адсорбент — адсорбат (энергия адсорбции, изотерма адсорбции и т. п.). Все эти величины обычно определяются при помощи адсорбционных опытов в статических условиях. Однако адсорбционные измерения часто бывают весьма длительными и требуют много времени для завершения и получения окончательного результата. В особенности это относится к калориметрическим определениям дифференциальных теплот адсорбции, требующим сложной аппаратуры, весьма чувствительной к колебаниям внешних условий. В послед нее время появляется довольно много работ по газо-хроматографическому исследованию изотерм адсорбции [1]. В ряде работ показано, что хроматографический метод позволяет быстро при некоторых допущениях определить изотерму адсорбции в удовлетворительной близости к изотермам, измеренным в статических условиях в вакуумной аппаратуре. Гораздо в меньшей степени исследованы возможности определения теплот адсорбции по данным газовой хроматографии [2], так как в лабораториях, занимающихся газовой хроматографией, обычно нет калориметров, позволяющих для сопоставления непосредственно измерять теплоты адсорбции для тех же систем. [c.37]

    III. Хроматография на обычных адсорбентах [c.191]

    Непористые частицы размером от 0,1 до 0,3 мм (размер частиц, обычно используемых в газовой хроматографии) имеют небольшую удельную поверхность порядка сотых долей м /г. В газовой хроматографии применяют в основном твердые тела со значительно большей удельной поверхностью твердые носители в газо-жидкостной хроматографии обычно имеют поверхность 1—10 м /г, адсорбенты в газо-адсорбционной хроматографии— 10—1000 м /г. Такие боль- [c.24]

    Газо-адсорбционный метод этих недостатков не имеет. Основным его недостатком является лишь нелинейность изотерм адсорбции, приводящая к несимметричности пиков. Нелинейность связана с геометрической и химической неоднородностью поверхности обычных активных адсорбентов. Особенно резко она проявляется в случае сильно адсорбирующих молекул. Неоднородность и высокая адсорбционная, а иногда и каталитическая активность обычных адсорбентов ограничивают их применение в газовой хроматографии. Поэтому такие адсорбенты применяются в основном лишь для анализа газообразных веществ, не содержащих активных функциональных групп, изотермы адсорбции которых при исполь- [c.84]

    К легким газам в хроматографии обычно относят водород, азот, кислород, элементы нулевой группы периодической таблицы, а также метан, оксид и диоксид углерода. Определение состава смесей, включающих эти газы, необходимо при анализе атмосферы нефтяных, болотных и рудничных газов продуктов радиоактивного распада, производства редких газов и продуктов электролиза газов, растворенных в металлах, в крови газов, выдыхаемых человеком многих смесей. Для хроматографического разделения таких смесей необходимы сильные сорбенты типа активных углей, силикагелей, алюмогелей и молекулярных сит. Однако вследствие очень высокого давления пара и примерно одинаковых размеров молекул разделить некоторые пары веществ даже на колонке с молекулярным ситом удается лишь при весьма низких температурах. Кроме того, вследствие сорбции газа-носителя может происходить изменение свойств адсорбента по отношению к разделяемым веществам, и, таким образом, природа подвижной фазы оказывает влияние на селективность колонки и форму регистрируемых пиков [231]. [c.221]

    В качестве адсорбента — пористого твердого вещества — в газовой хроматографии обычно используют окись алюминия, силика-гели синтетические цеолиты и активированные угли в последнее время широко применяют пористые полимеры. [c.34]

    Препаративное выделение и накопительная хроматография. Обычно после обнаружения природных ростовых веществ с помощью хроматографии на бумаге, цветных реакций и биотестов возникает необходимость выделить некоторые наиболее активные ростовые вещества в больщих количествах — порядка нескольких десятков миллиграмм (для фенольных ингибиторов) или нескольких долей миллиграмма (для ИУК и абсцизовой кислоты), очистить их от примесей других веществ и дать им более полные физико-химическую и биологическую характеристики. Для этой цели обычно используют хроматографическое разделение на колонках с адсорбентом типа капрона, силикагеля, целлюлозы или на бумаге Ватман 3 ММ. [c.34]

    Кроме газов методом вытеснительной хроматографии можно разделять и жидкости, причем пары разделяемой смеси и вытеснителя подают в колонну потоком газа-носителя. При разделении жидкостей на обычных адсорбентах проявительным методом изотермы сорбции сильно искривлены, а пики асимметричны. Это делает невозможным использование проявительного метода, но дает возможность применять вытеснительный вариант хроматографии. Так, на колонне, заполненной окисью алюминия (100—150 меш), модифицированной нитратом серебра, разделяют смеси цис- и гранс-гептенов при 75° С (рис. 40). Объем вводимой пробы 1,0 г. Вытеснителем служат пары н-октена-1, насыщающие при 45° С азот, который продувают со скоростью 250 мл/мин. Аналогично разделяют смесь эфиров на колонне с активированным углем. В качестве вытеснителя используют лг-ксилол. На рис. 41 показано разделение 5 г эфиров. Разделение менее эффективно в том случае, когда разделяе- [c.108]

    Именно большое значение йиор, характерное для классической жидкостно-адсорбционной хроматографии, является одной из причин ее низкой эффективности. В современной высокоскоростной жидкостно-адсорбционной хроматографии применяются поверхностно-пористые адсорбенты. Их принципиальное отличие от обычных адсорбентов состоит в том, что на твердое, не обладающее пористостью сферическое зерно носителя нанесен тонкий слой адсорбента с высокой пористостью. Для увеличения плотности заполнения колонки зернам носителя придают сферическую форму и одинаковый для всех зерен диаметр (20—40 мкм). Толщина слоя пористого вещества составляет примерно 1 мкм. [c.74]

    Содержание воды в растворителе удобно контролировать с помощью газовой хроматографии. Обычно используется колонка размером 1,8 м X 6,35 мм, заполненная адсорбентом типа Рогарак Q . При 175°С проба объемом 50 мкл ацетонитрила с 2,2 мМ воды дает пик величиной 0,1 мВ на катарометре с чувствительными элементами фирмы Gow Ma типа W при токе 150 мА. [c.10]

    Скорости подвижной фазы в традиционной колоночной жидкостной хроматографии обычно. цовольно низки по сравнению, например, со скоростями в газовой хроматографии, так как диффузия молекул разделяемых веществ в стационарной фазе жидкостной хроматографии происходит относительно медленно. Это связано с тем, что в традиционной жидкостной хроматографии стационарная фаза применяется в форме довольно крупных частиц относительно большого размера (примерно той же величины, что и в газовой хроматографии). Для того чтобы увеличить скорость диффузии молекул пробы в неподвижной фазе, в жидкостной хроматографии высокого разрешения применяются частицы очень малого размера. Малые размеры таких мелких частиц создают определенные затруднения для того чтобы продавить подвижную фазу через колонку, плотно заполненную очень мелкими частицами, требуется давление, намного превышающее атмосферное. Начиная с 1968 г. это направление хроматографии развивалось очень быстро. Для нагнетания подвижной жидкой фазы в колонки, заполненные очень мелкими частицами, применяются насосы, развивающие давление в сотни килограммов на квадратный сантиметр. Величина частиц современных адсорбентов составляет всего несколько микрометров. Разработаны специальные неподвижные фазы, имеющие непроницаемую для жидкости твердую сердцевину, что ограничивает диффузию органических соединений только поверхностным слоем адсорбента. Это облегчает элюирование разделяемых веществ. Обычно в жидкостной хроматографии высокого давления применяют детекторы, регистрирующие элюируемые из колонки вещества по изменению показателя преломления, по поглощению УФ-света и по возникновению флуоресценции. Это экспериментальное направление развивалось очень быстро, и сейчас этот высокоэффективный метод разделения стал доступен химикам-органикам. [c.447]

    В качестве адсорбентов при адсорбционной хроматографии обычно применяют бесцветные или слабоокрашениые вещества. Наиболее распространенными адсорбентами являются окись алюминия, используемая для разделения нейтральных и основных веществ, и активированный уголь, применяемый для адсорбции веществ из водных или спиртовых растворов. Реже применяются силикагель, окись магния, гидрат окиси кальция, углекислые и сернокислые соли щелочноземельных и шелочных металлов, а также глюкоза, лактоза и др. [c.80]

    Для разделения некоторых ароматических и алифатических спиртов в настоящее время применяют высокоскоростную жидкостную хроматографию. Обычно используют колонки размером 2 м X 2 мм и высокоэффективные фазы в качестве сорбентов. Например, используя адсорбент видак (Уу(1ас) в качестве насадки и проводя элюирование 1%-ным раствором амилового спирта в изооктане при рабочем давлении 196,9 атм, можно разделить производные бензилового и коричного спиртов, причем последний требует большего времени элюирования (рис. 18.1) [2]. Эти вещества также были хорошо разделены при комнатной температуре и давлении 17,58 атм на колонке, наполненной пермофа-зой ЕТН, Однако порядок их элюирования был другой. Если для [c.22]

    В хроматографии применяют большое число неподвижных фаз, наиболее широко используют диоксид кремния 51()2-хН20, являющийся полярным адсорбентом. Диоксид кремния, применяемый в хроматографии, обычно имеет площадь поверхности около 500 мУг. объем пор около 0,4 мл/г и средний диаметр пор порядка 10 нм [44]. Адсорбция происходит за счет расположенных на поверхности гидроксильных групп, связанных с атомами кремния и образующих с адсорбированными молекулами водородные связи [44]. Максимальную концентрацию поверхностных гидроксильных групп получают нагреванием до 200 °С, когда большая часть адсорбированной воды удаляется. При более высоких температурах гидроксильные группы взаимодействуют друг с другом, освобождая воду, и поверхностная активность уменьшается (рис. 25-2). [c.542]

    Тонкослойная хроматография. Обычно в зоне абсцизовой кислоты на бумажной хроматограмме находятся сопутствующие вещества (возможно фенольной природы), которые затрудняют идентификацию этого ингибитора. Поэтому для дальнейшей очистки мы применяли метод тонкослойной хроматографии. Для этого ингибирующую зону, определенную по биотесту, вырезают из бумажной хроматограммы и элюируют 96%-ным этиловым спиртом 2— 3 раза. Спирт упаривают под вакуумом при температуре 40° до небольшого объема и этот объем наносят на пластинки с тонким слоем в виде полосы, отступая от края пластинки на 1,5 см. При приготовлении пластинок применяли общепринятую методику [7]. В качестве адсорбента использовали селикагель Н , который очень удобен при определении ростовых веществ, так как не содержит соединений, мешающих проведению биологических тестов. Удобны готовые пластинки Силуфол ЦУ -254 с люминисцентным индикатором, что значительно облегчает идентификацию веществ по флюоресценции или поглощению в УФ-свете. [c.92]

    Хроматографический метод, разработанный известным русским ученым М. С. Цветом, является одним из наиболее быстрых, точных и простых приемов анализа сложных смесей веществ. Сущность этого метода состоит в том, что при движении через пористую среду смесь веществ разделяется под действием различных факторов. Такими факторами являются 1) различная адсорбируе-мость компонентов смеси 2) обмен между ионами раствора и ионами на поверхности адсорбента 3) различная растворимость образующихся труднорастворимых осадков 4) различное распределение компонентов между двумя несмещивающимися жидкими фазами и т. д. В соответствии с этим хроматографию обычно подразделяют на адсорбционную, ионообменную, осадочную, распределительную и др. В последнее время особенно большое развитие получил метод распределительной хроматографии на бумаге, который сейчас очень широко ИС пользуется в биохомии, физиологии, микробиологии, химии для определения самых разнообразных веществ. [c.25]

    Оксид магния чаще всего применяется для разделения соединений типа каротиноидов и порфиринов. Хроматографические свойства оксида алюминия наиболее подробно исследовал Снайдер [68] . Этот автор нашел, что активность дезактивированного водой оксида магния можно быстро повысить, элюируя его сухими органическими растворителями. Однако после такой обработки возможна необратимая адсорбция некоторых органических, главным образом ароматических, соединений. Этого нежелательного явления можно избежать, используя растворители, содержащие воду. По своим свойствам оксид магния в известной степени похож на оксид алюминия. Основное различие заключается в его большем сродстве к двойным углерод-углерод-ным связям, а следовательно, и к ароматическим соединениям. Для хроматографическо1 о анализа можно использовать собственно оксид магния и различные его комбинации с другими адсорбентами. В колоночной хроматографии обычно применяют оксид магния в сочетании с диатомовой землей, чтобы облегчить элюирование. Николаидес [51] определил условия тонкослойного и колоночного хроматографирования таких смесей восков и стеринов, которые трудно разделить другими методами. Он показал, что разделение веществ на оксиде магния происходит в соответствии с плоскостными размерами их молекул. [c.170]


Смотреть страницы где упоминается термин Хроматография на обычных адсорбентах: [c.52]    [c.385]    [c.386]    [c.244]    [c.67]    [c.26]    [c.95]    [c.57]    [c.112]    [c.72]   
Смотреть главы в:

Жидкостная колоночная хроматография том 2 -> Хроматография на обычных адсорбентах




ПОИСК







© 2025 chem21.info Реклама на сайте