Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Техническое применение никеля

    Техническое применение никеля [c.639]

    Разнообразное техническое применение металлов семейства железа нельзя описать в кратком обзоре. Следует помнить, что почти все конструкционные материалы современного машиностроения построены на базе железа, кобальта и никеля. [c.140]

    При проверке влияния качества сырья на свойства катализатора 3076 была показана возможность применения более дешевого технического сернокислого никеля (ГОСТ 2665—44) взамен реактива азотнокислого никеля (ГОСТ 4055—48).Кроме того, было установлено, что применение вольфрамовой кислоты, полученной окислительным обжигом отработанного катализатора 5058 ( У 52) и содержащей до 4—5% РегОз,приводит к повышению содержания РегОз в катализаторе до 2—2,5 вес. % (против 0,2), сопровождающемуся резким снижением гидрирующей активности катализатора (глубина гидрирования нефтяного сырья падала с 95 до 77%). Таким образом, установлено, что при производстве катализатора 3076 должно быть практически полностью исключено загрязнение его железом. [c.405]


    Широкое техническое применение получили сплавы меди с цинком (латуни), оловом, алюминием, кремнием, свинцом, бериллием (оловянные и специальные бронзы), никелем (мельхиор, константан, нейзильбер, монельметалл), марганцем (манганины) и другие более сложные сплавы. [c.70]

    Источником ультразвука для технического применения обычно служат кристаллы кварца, турмалина, титаната бария и др., обладаюш ие пьезоэлектрическими свойствами, или металлические стержни никеля, кобальта, железа, ряда сплавов, реализуемые в магнитострикционном методе получения ультразвука. [c.474]

    При этом для решения вопроса о пригодности материала, если он содержит больше примесей, чем это предусмотрено ГОСТом или ТУ, надо всегда исходить из конкретных условий его применения. Например, технический сернокислый никель марки НС-3, обычно применяющийся для [c.47]

    Техническое применение имеет небольшое число металлов сталь, никель, свинец, платина, а также некоторые сплавы. Сталь и никель используются в качестве анодов исключительно в щелочных и нейтральных растворах, например, при электролизе воды. [c.9]

    После многочисленных патентных заявок в США был выдан в 1931 г. первый патент на гальваническое металлопокрытие магния. В нем описан метод электролитического осаждения цинка на магний из безводного раство ра. Неизвестно, был ли этот способ когда-либо технически использован в широких масштабах. Приблизительно через 10 лет в США был запатентован другой метод осаждения цинка на магний из цианистой цинковой ванны. Однако и этот метод не нашел широкого технического применения. В 1943 г. в Америке был выдан патент на метод никелирования сплавов магния. Вначале магний подвергался травлению в растворе, состоящем из смеси кислот хромовой, азотной и серной. Затем следовала обработка в смеси плавиковой и азотной кислот. Из этого раствора осаждалась пленка, состоящая из фторидов, на которую наносили покрытие из фторборатного никелевого электролита. Электролит был назван никель-фтор-бо-рат , так как считается, что в нем присутствуют эти соединения. Он содержит сульфат никеля, борную кислоту, фтористый аммоний и плавиковую кислоту. Этот метод был в течение ряда лет единственным по гальванической о работке. магния. Другие (кроме никеля) металлы осаждались на предварительно осажденное никелевое покрытие. В дальнейшем более совершенный метод открыл новые области применения, дающие возможность получать блестящие поверхности, устойчивые против потускнения и износа. Метод состоит в основном в том, что вначале наносят цинковое покрытие, за которым следует предварите пьное меднение и гальваническая обработка в обычных электролитах. Пользуясь этим методо.м, любой электролитически осаждаемый металл [c.308]


    Замечательной реакцией ацетилена является его полимеризация в циклооктатетраен (VII), которая происходит в растворе тетрагидрофурана в присутствии цианида никеля. Химия этого соединения широко изучена и его техническим применением может явиться окисление в терефталевый ангидрид или кислоту с помощью гипо-хлорита или хромовой кислоты [c.172]

    Столь же малое и даже еще меньшее количество никеля вызывает заметное ослабление люминесценции, особенно в стадии затухания, что также находит техническое применение при наблюдении быстро сменяющих друг друга изображений. [c.8]

    Около 3 % всего никеля используется для покрытий технического применения, где покрытия относительно толстые и неблестящие. Такие покрытия применяют для [c.435]

    До XX век техническое применение имели главным образом железо, медь, свинец, олово, марганец, цинк. В настоящее время в технике применяются почти все известные металлы. Особенно большое значение приобрели алюминий, магний, хром, никель, кобальт, ванадий, титан, вольфрам, молибден, бериллий, сурьма, ртуть, а в последние годы и уран, торий, цирконий, ниобий, тантал, германий, индий, галлий. [c.112]

    Снои, его ресурс составляет от 600 (при 100%-ном разряде) до 10000 циклов (при 30%-ной глубине разряда). Удельная энергия НВ батарей емкостью 3— 60 А-ч достаточно велика (55—70 Вт-ч/кг). Недостаток НВ аккумулятора — высокий саморазряд в пределах 6—12% в сутки, вызванный взаимодействием водорода с гидроксидом никеля, поэтому эти источники тока имеют ограниченное техническое применение. [c.238]

    Применение. Так как на цинк при обычных условиях не действуют ни кислород воздуха, ни вода, то основная масса цинка расходуется на защитные покрытия железных листов и стальных изделий. Цинк применяют для получения технически важных сплавов с медью (латуни), алюминием и никелем, а также для производства цинково-угольных гальванических элементов, которые используют в батареях разного назначения. [c.108]

    Сначала расплавляют узкую зону, совпадающую с левым концом стержня. Так как эта зона слева не контактирует с твердой фазой, то концентрация примеси в ней остается Со. Незначительное передвижение нагревателя в правую сторону приведет к кристаллизации металла слева от нагревателя и перемещению расплавленной зоны в правую сторону. В первой порции затвердевшего металла концентрация примеси составит с = 1 со, и, так как <1, она будет меньше исходной. Дальнейшее перемещение расплавленной зоны приводит к увеличению концентрации примеси в жидкости и накоплению примеси в правом конце стержня. Многократное прохождение зоны вдоль стержня приводит к глубокой очистке металла и достижению особых свойств. Примером может служить очистка германия, используемого в качестве полупроводникового материала. Присутствие в этом металле небольших количеств меди, железа, никеля резко изменяет его проводимость и делает непригодным для применения в радиол технических устройствах. Очистка зонной плавкой снижает содержание указанных элементов до концентрации, меньшей, чем один атом примеси на 10 атомов германия. [c.124]

    Неорганические пигменты благодаря высокой устойчивости к действию света, тепла, влаги, химических реагентов, а также относительной дешевизне находят наибольшее применение в лакокрасочной промышленности. К ним относятся оксиды, средние или основные соли или комплексные соединения металлов, высокодисперсные порошки металлов (алюминия, меди, цинка, железа, никеля) и их сплавов (бронзы, латуни), технический углерод. Размеры и форма частиц пигментов, степень их агрегации и устойчивость агрегатов в значительной мере определяют их укрывистость, красящую способность, оттенок, способность диспергироваться в пленкообразующем и образовывать блестящие покрытия. Для каждого пигмента существует оптимальный размер частиц. Например, для диоксида титана 0,2— 1,0 мкм, ДЛЯ оксида цинка 0,15—2,00 мкм, для технического углерода 0,015—0,030 мкм, для охры 1—10 мкм. Для перевода пигментов в требуемую выпускную форму их размалывают, после чего добавляют неионогенные поверхностно-активные ве- [c.212]

    В настояш,ем исследовании был применен изобутилен, полученный дегидратацией изобутилового спирта. По данным хроматографического анализа он содержал 98,5% изобутилена и 1,5% к-бу-тилена. Полученные кинетические закономерности на изобутилене были затем проверены на технической пропан-пропиленовой фракции, очиш,енной от сернистых соединений горячей и холодной ш,елочной промывкой и частичным гидрированием над никель-хромовым катализатором (отделение ацетиленистых и диеновых соединений). Количество пропилена во фракции составляло 75%. [c.23]

    Применение колориметрического метода для анализа многих технических материалов нередко встречает затруднения в связи с наличием в растворе посторонних окрашенных соединений. Например, при определении ряда компонентов в стали испытуемый раствор сам бывает несколько окрашен вследствие присутствия железа, никеля, хрома и др. При определении аммиака в природной воде измерение окраски желтого продукта реакции иногда дает неточный результат вследствие наличия в воде гу-миновых соединений, окрашивающих воду в желтый цвет. Если собственная окраска испытуемого раствора не слишком интенсивна, то ее влияние можно с достаточной точностью устранить применением простого прибора — компаратора. [c.183]


    Уточнены расходные показатели производства обеих модификаций катализатора 3076 установлена возможность применения технического сырья — сернокислого никеля и вольфрамовой кислоты, а также показана целесообразность применения широкопористой окиси алюминия при производстве катализатора типа 3076-А1. [c.415]

    Щелочные никель-железные (НЖ) аккумуляторы по сравнению со свинцовыми имеют ряд эксплуатационных преимуществ, что обусловило их техническое применение на транспорте и в других областях. Однако удельная энергия лучших образцов НЖ-аккумуляторов сравнительно невысока и лежит в пределах 20—30 Вт-ч/кг. Одной из основных причин низких удельных характеристик является ламельная конструкция электродов. Больше половины массы электродов приходится на стальную ламольную лепту, контактные планки и ребра. Масса активного вещества электродов составляет лишь около 20 % от общей массы аккумулятора — почти столько же, сколько приходится на стальной корпус. Другой причиной снижения удельной энергии является высокое падение напряжения в электродах и отчасти в электролите. [c.222]

    Взаимодействие карбонилов металлов с циклопентадиеном приводит непосредственно к получению дициклопентадиенильных соединений металла (СбН5)2М, если реакцию ведут в более жестких условиях, чем при синтезе циклопентадиенилметаллкар-бонилов, обсуждавшемся в предыдущем разделе. Этот метод был использован в первых синтезах соответствующих производных хрома и кобальта он, как было показано, применим также для железа и никеля, но в настоящее время имеет, по-видимому, лишь небольшое препаративное значение. Родственный метод, использованный Миллером и сотрудниками [Ш2] в одном из первых синтезов ферроцена, а именно нагревание самого металла с циклопентадиеном, не был распространен на другие металлы (за исключением магния [3]). Он, однако, был усовершенствован и сделан доступным для технического применения при этом используется окись железа и водород, а свободный металл образуется с такой же скоростью, с какой он реагирует с углеводородом [23а]. Патент предусматривает также применение специально приготовленной окиси без водорода [23а, 164]. Поэтому реакцию можно написать в следующем виде  [c.412]

    Мансурова 3. С., Пученкина Н. И. и Коршунов И. А. Применение полярографического метода при анализе технического сульфата никеля. [Определение Си, Zn и РЬ]. Зав. лаб., 1945, 11, № 7-8, с. 635—640. [c.186]

    Свинец обладает достаточно высокой стойкостью, однако крайне низкая прочность при повышенной температуре усложняет его применение. Никель удовлетворительно стоек только при температурах до 170—175°С. Серебро совершенно не подвергается коррозии. Его используют иногда в виде тонколистовой обкладки или гальванического покрытия при повышенном давлении (схема Хемико , 288 ат). Технически чистый титан марки ВТ-1 довольно перспективный защитный материал. Он легок (плотность 4,5 г см ), обладает высокой прочностью (От = 40—50 кгс1мм ), довольно пластичен и сваривается аргоно-дуговой сваркой и под флюсом. Коэффициент линейного расширения его близок к коэффициенту расширения углеродистых сталей, что очень важно для футеровки. [c.230]

    Комплексы таких азометинов с железом, кобальтом, марганцем, медью, никелем и алюминием разлагаются в минеральнокислой красильной ванне. Однако хромовые комплексы о,о -диоксиднарил-азометинов в тех же условиях более устойчивы, несмотря на легкость гидролиза исходных азометинов под действием кислоты. Установлено [179], что свойства хромового комплекса ( XXXVIII) сравнимы со свойствами хромового комплекса соответствующего о,о -диоксиазокрасителя ( XXXIX). Однако красящая способность хромовых комплексов азометинового ряда значительно ниже и они не нашли большого технического применения. [c.2012]

    Широкое техническое применение для фасонного литья и обработки давлением получили сплавы меди с цинком (латуни), олово М, алюминием, кремнием, свинцом, бериллием (оловянные и специальные бронзы), никелем (мельхиор, константан, ней-вильбер, монель-металл), марганцем (манганины) и другие более сложные сплавы. Значительно также применение меди в качестве легирующей добавки в сплавы на алюминиевой оанове (дуралюмин и др.). Диаграммы состояний различных систем, образуемых медью, указывают на возможность технического применения и для литья и для обработки давлением сплавов на основе меди, содержащих в качестве легирующих компонентов такие элементы, как сурьма, фосфор, хром и др. Так, сплаеы меди с фосфором (6—8%) уже используются в качестве припоев. [c.93]

    А. Классен. Электроанализ. ОНТИ, 1934, (356 стр.), перевод с немецкого. 5 втор в течение ряда лет занимался разработкой этого метода и поэтому книга в значительной степени представляет собой сводку собственных экспериментальных исследовани11 автора. Монография содержит главы об определении и разделении свыше 60 элементов путем электролиза, а также о применении этого метода при анализе технически) материалов руд, сплавов меди, цинка, олова, свинца, никеля и др. [c.489]

    На предприятиях, перерабатывающих сульфидные никелевые руды, в качестве продукта, концентрирующего никель, получается сульфид никеля, содержащий около 2—3% меди (никелевый концентрат от флотации файнштейна). Попытки применения переплавленного сульфида никеля в качестве анода были начаты в Советском Союзе в 1932 г., в Свердловске, проф. Н- Н. Бара-башкиньш и продолжены на Урале М. А. Лошкаревым и Г. Е. Лапп, также А. И. Журиным и Н. В. Зверевич в ЛПИ 2. Предлагаемый способ не был внедрен по техническим и экономическим причинам хрупкость отливаемых анодов, высокое напряжение на ваннах вследствие образования на аноде плотной корки шлама, незначительный выход по току для никеля на аноде и окисление серы в серную кислоту. [c.387]

    Среди многочисленных коррозионностойких сталей и сплавов наибольшее применение в различных отраслях промышленности всех технически развитых стран нашли аустенитные хромоникелевые стали типа Х18Н10 (18-10, 18-9, 18-8) и их модификации. В настоящее время свыше 70% от общего мирового и российского производства коррозионностойких сталей и сплавов приходится на хромоникелевые стали, содержащие в среднем 18% хрома и 10% никеля. Стали такого типа широко используются в нефтегазовых и других отраслях промышленности, таких как химических и нефтехимических производствах, авиа- и судостроении, атомной энергетике, пищевой и фармацевтической промышленности, автомобилестроении и т.д. Они используются для аппаратного оформления процессов в установках переработки нефти и газа, в качестве гибких напорных трубопроводов для разлива нефти и нефтепродуктов, коррозионных сред, выполняют функции разграничителей сред в запорной и регулирующей арматуре и т.д. Эти стали отвечают самым разнообразным потребительским требованиям, и в современной технике во многих случаях незаменимы. [c.3]

    Гидрогенолиз, применяемый в исследованиях строения лигнина (см. 6.3.1), можно использовать для получения из лигнинов фенолов с относительно высоким выходом [71, 74, 185, 1861. Гидрированием солянокислотного лигнина при 250 °С в присутствии комплексов переходных металлов (железа, кобальта, никеля) можно получить мономерные фенольные продукты с выходом до 36 % [1571. Техническая реализация процесса производства фенолов из лигнина гидрогенолизом сдерживается необходимостью применения дорогостоящего оборудования для работы под давлением, большим расходом энергии, высокой стоимостью катализатора и, наконец, сложностью разделения смеси фенольных продуктов и очистки индивидуальных соединений. В полупромышленных условиях был испытан только процесс Ногучи [70, 133]. В этом процессе в качестве катализаторов используют недорогие устойчивые к сере сульфиды металлов обработка проводится под давлением 10 МПа при 370—430 в течение 0,5—4,0 ч. [c.426]

    По мере совершенствования никелевых катализаторов и, в особенности, после открытия скелетного никеля применение платиновых и палладиевых катализаторов для технической гидро генизации жиров практически прекратилось. Скелетный никель обеспечивал почти так же, как и пaлJ ий, гидрогенизацию многих жиров при температуре до 100° С. Катализатор Бага [14] в 30-х годах был применен в СССР и для жировой промыШ ленности 137]. Этот катализатор весьма активен и удобен его легко регенерировать повторной щелочной обработкой. [c.140]

    Весьма выгодные экономические перспективы гидрогенизации жиров еще в прошлом столетии вызвали интерес химиков к этой области. Однако проводившиеся тогда исследования оказались технически несостоятельными проблему можно было решить только применением каталитических методов. Поэтому после п оя-вления первых исследований Сабатье но вопросу о гидрогенизации этиленовых соединений были начаты ра бо-ты и в области гидрирования жиров. В 1902 г. Лешринц и Сивеке, а в 1903 г. Норман предложили первые способы жидкофазной гидрогенизации масел в присутствии никеля. В 1907— 1909 г. Ипатьевым, Бедфордом и другими исследователями эти способы были улучшены было введено повышенное давление водорода и никелевые катализаторы заменены на более активные смешанные катализаторы. С тех пор проблема гидрогенизации жиров нашла удовлетворительное техническое решение, и процесс стал широко использоваться в промышленности (см. [2-5]). [c.100]

    Исследования обоснованности использования проектнши институтами и химическими предприятиями в проектных решениях коммуникаций новых и реконструируемых производств химической промышленности из нержавеющих и конструкционных легированных сталей, никеля, молибдена, меди, олова, свинца и других остродефицитных цветных металлов и сплавов на их основе показали,что технически и экономически оправдано применение неметаллических материалов.  [c.4]

    В технической литературе встречаются рекомендации по применению полярографии для непосредственного определения коицентра-ции ионов тяжелых металлов в сточиых водах. Рассмотрим часто применяемые аналитические методы опреде.тения железа, хрома, меди и никеля. [c.132]


Смотреть страницы где упоминается термин Техническое применение никеля: [c.412]    [c.412]    [c.312]    [c.121]    [c.331]    [c.162]    [c.135]    [c.201]    [c.2]    [c.320]    [c.31]    [c.48]    [c.628]    [c.651]   
Смотреть главы в:

Физико-химические свойства элементов -> Техническое применение никеля




ПОИСК





Смотрите так же термины и статьи:

Никель, применение



© 2025 chem21.info Реклама на сайте