Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аргинин недостаточность

    Незаменимые аминокислоты не синтезируются в организме животных и должны поступать извне — с пищей. К ним относятся гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан, валин и аргинин. Организм некоторых животных обладает способностью синтезировать, хотя и недостаточно быстро, аргинин, необходимый для нормального роста. [c.23]

    При биологическом синтезе белка в полипептидную цепь включаются остатки 20 аминокислот (в порядке, задаваемом генетическим кодом организма), а также их производных. Среди них есть такие, которые не синтезируются или синтезируются в недостаточном количестве самим организмом и вводятся в организм вместе с пищей эти вещества называются незаменимыми аминокислотами. К йим относятся (указаны в порядке уменьшающейся для человека потребности) лейцин, лизин, валик, фенилаланин, метионин, гистидин, триптофан, аргинин, треонин, изолейцин. [c.549]


    Приведенные данные по поводу незаменимости отдельных аминокислот для роста или азотистого равновесия были первоначально получены в опытах на крысах и собаках. Имеющиеся в настоящее время данные позволяют предполагать, что для поддержания азотистого равновесия у людей необходимы все вышеуказанные незаменимые аминокислоты, за исключением, по-видимому, аргинина и гистидина. В аналогичных опытах на цыплятах выяснилось, что гликокол является аминокислотой, незаменимой для роста цыплят. Но эти данные отличаются от данных, полученных в опытах на собаках и крысах. Поэтому следует предостеречь от механического переноса результатов опыта с одного вида животных на другие. Кроме того, не следует забывать того важного обстоятельства, что заменимые аминокислоты существенно влияют на потребность в незаменимых аминокислотах., Потребность, например, в метионине определяется содержанием цистина в диете чем больше в пище имеется цистина, тем меньше расходуется метионина для биологического синтеза цистина. Последний уменьшает, следовательно, потребность организма в метионине. Наконец, если в организме скорость синтеза какой-либо заменимой аминокислоты становится недостаточной, то появляется повышенная потребность в ней, которая может быть компенсирована поступлением ее с пищей. Отсюда ясна условность деления аминокислот на заменимые и незаменимые. [c.326]

    Белки в питательном рационе вполне могут быть заменены аминокислотами. Оказалось также, что часть необходимых аминокислот животные могут вырабатывать сами из других азотосодержащих органических соединений. Другую часть аминокислот организм синтезировать не в состоянии, они должны поступать в готовом виде, в составе белков пищи. Такие аминокислоты получили название незаменимых. К ним относятся лизин, триптофан, фенилаланин, валин, метионин, треонин, лейцин, изолейцин, гистидин, аргинин. Белковая пища должна покрывать не только общую потребность в аминокислотах, но и содержать необходимые количества незаменимых аминокислот. При недостаточном поступлении этих аминокислот нормальное существование организма нарушается. Так, например, белок кукурузы зеин не содержит лизина и почти не содержит триптофана. В опытах с животными, которые получали с пищей один только этот белок, наблюдалось похудание, несмотря на обильное кормление. Отсутствие в пище триптофана может быть причиной тяжелого заболевания глаз — катаракты. [c.401]

    Основные структурные данные по строению аминогрупп собраны в табл. 52. Почти во всех исследованных аминокислотах аминогруппы имеют форму NHз+. Исключение составляет структура аргинина, в которой аминогруппа присутствует в необычной для аминокислот форме — NN2. Но и в этом случае вокруг атомов азота осуществляется тетраэдрическое окружение за счет образования определенной системы водородных связей. К сожалению, точность определения положения атомов водорода методом рентгеноструктурного анализа недостаточна для того, чтобы делать [c.134]


    Приведенная классификация нуждается в некоторых пояснениях. Аргинин в незначительных количествах может синтезироваться в организме крыс. При отсутствии аргинина в пище молодых крыс рост их прекращается, но они не погибают, как это имеет место при отсутствии в пище какой-либо другой незаменимой аминокислоты. Отсюда можно заключить, что количество аргинина, синтезируемого в организме молодых крыс, недостаточно для обеспечения их роста. [c.473]

    Частично заменимые аминокислоты (гистидин, аргинин — для человека) синтезируются в организме, но скорость их синтеза крайне недостаточна для обеспечения потребностей организма, особенно у детей. [c.43]

    Гуанидиновая группа аргинина может блокироваться нитрованием или тозилированием. Последний метод, очевидно, предпочтительнее, так как тозильный остаток может быть удален как посредством HF, так и с помощью расщепления бортрис-(трифторацетата) [427]. В случае нитроаргинина существует опасность расщепления с образованием орнитина. Все еще недостаточно решена проблема защиты цистеина при твердофазном синтезе, хотя перепробовано множество вариантов. Амидные группы глутамина и аспарагина целесообразно защищать. Общеизвестные побочные реакции при применении многофункциональных аминокислот, такие, как, например, транспептидация в случае аспарагиновой кислоты или образование пирролидон-5-карбоновой-2 кислоты с глутамином, представляют опасность также и в случае синтезов Меррифилда. [c.188]

    Таблетки " Байкамин", покрытые оболочкой Г-аргинина гидрохлорид Г—гистидина гидрохлорид гидрат Ь-лизина байкалинат Средство для лечения уремии и хронической почечной недостаточности [c.8]

    Муковисцидоз Системное поражение органов, в ряде случаев недостаточность поджелудочной железы, закупорка кишечника, закупорка бронхов Г ипераммониемия Нарушение цикла мочевины, накопление аммония, дефицит аргинина Ранняя форма, развивающаяся в первые 72 ч после рождения летаргия, рвота, кома, смерть в случае вьгживания - необратимое повреждение мозга Поздняя форма рвота, летаргия, эпгшептические припадки [c.485]

    В последние полтора десятилетия в биологии произошли события, повлекшие за собой фундаментальные изменения наших представлений о функционировании самых различных биологических систем. Было обнаружено, что оксид азота - NO, является одним из универсальных и необходимых регуляторов функций клеточного метаболизма [1-12]. Неожиданно оказалось, что газ, и газ токсичный, молекула которого является, к тому же, свободным радикалом, соединением коротко-живущим и легко подвергающимся самым разнообразным химическим трансформациям, непрерывно ферментативно продуцируется в организме млекопитающих, оказывая ключевое воздействие на ряд физиологических и патофизиологических процессов. Оксид азота участвует в регуляции тонуса кровеносных сосудов, ингибирует агрегацию тромбоцитов и их адгезию на стенках кровеносных сосудов, функционирует в центральной и вегетативной нервной системе, регулируя деятельность органов дыхания, желудочно-кишечного тракта и мочеполовой системы. Существуют две стороны проблемы NO в организме млекопитающих. Первая - это образование NO в организме в недостаточных количествах, что приводит к ряду тяжелых последствий (сердечно-сосудистые, инфекционные, воспалительные заболевания, тромбозы, злокачественные опухоли, заболевания мочеполовой системы, мозговые повреждения при инсультах и др.). Другая, и не менее важная, сторона проблемы - продукция в организме избыточных количеств оксида азота. Из-за "вездесущей природы" NO, способного в результате простой диффузии проникать практически через любые биологические мембраны, слишком большой выброс этого медиатора приводит к целому ряду тяжелых патологических состояний. К таким болезням относятся септический шок (остро развивающийся, угрожающий жизни патологический процесс, обусловленный образованием очагов гнойного воспаления в органах и тканях), нейродегенеративные заболевания, различные воспалительные процессы. Поскольку хорошо известно, что генерация эндогенного NO в организме - результат окисления L-аргинина ферментами NO-синтазами, очевидно, что во избежание перепродукции этого соединения необходимо использование ингибиторов NOS. [c.30]

    Как видно из табл. 24.1, аргинин и гистидин относятся к полунезамени-мым, т. е. они могут синтезироваться в организме, но в количестве, недостаточном для сохранения нормальной жизнедеятельности человека. Последствия недостаточности какой-либо незаменимой аминокислоты приводят к остановке роста и развитию клинической картины, напоминающей авитаминоз. [c.360]

    Шталлинг и Герке довольно подробно рассмотрели проблемы ацилирования аргинина и пришли к выводу, что трифторацетилирование при комнатной температуре дает гуанидиниевую соль, недостаточно летучую для ГХ. Если ввод пробы в испарители (особенно металлические) проводят в присутствии избытка трифторуксусного ангидрида, то при высокой температуре в какой-то степени образуется три-ТФА-соединение (V) (см. также ссылку [25]) и иногда наблюдают соответствующий пик. (При этом большое значение имеет набивка колонки и выбор жидкой фазы.) В результате разложения, происходящего в той или иной степени в импульсных нагревателях, образуются некоторые количества орнитина. Полностью ацилиро-ванное производное аргинина, не проявляющее тенденции к [c.111]


    Ацетилированные О- и S-группы сравнительно устойчизы. Для ацетилирования дихлоргидрата эфира аргинина ацилирую-щей способности уксусного ангидрида недостаточно. Необходимо сначала получить свободное основание обессоливанием на анионообменной смоле или нейтрализацией (разд. 2.4.3.5). Из-за высокой летучести, связанной с ТФА-группой, во избежание потерь при упаривании необходимо применять эфиры [c.116]

    Так как свободные аминокислоты и пептиды недостаточно летучи, прежде чем начинать ГЖХ, их нужно превратить в летучие производные. Получение производных — это главная проблема, которая решена до сих пор еще не для всех пептидов. Часть трудностей возникает из-за того, что многие важные аминокислоты в пептидной цепи наряду с а-амино- и карбоксильными группами содержат ряд других функциональных групп. В результате получаются производные, сильно различающиеся по летучести кроме того, часто протекают осложняющие побочные реакции. Так как нет принципиальных отличий в методах получения летучих производных аминокислот и пептидов, можно ожидать, что результаты и опыт работы с производными аминокислот будут способствовать развитию аналогичных методов и для соответствующих пептидов. Пока недоступными для ГЖХ анализа являются пептиды, содержащие гистидин, аргинин или аминокислоты (подобно аспарагину и глутамину) с дополнительной функциональной амидной группой. В отличие от аминокислот при анализе пептидов исследователь встречается с особыми эффектами, вызываемыми более высокими молекулярными весами пептидов и связанной с этим пониженной летучестью. Чтобы компенсировать низкую летучесть, приходится пользоваться только такими защитными группами, которые очень устойчивы при высоких температурах, значительно увеличивают летучесть и легко доступны. Эти условия ограничивают применимость к пептидам большого числа защитных групп, используемых для аминокислот. [c.146]

    Потребности в аминокислотах у младенцев были изучены Олбенизом [20]. О потребности в определенной аминокислоте судили по тому, какое количество ее необходимо для обеспечения нормального прироста веса и усвоения азота у ребенка, получавшего ранее недостаточное питание. Эти. исследования показали, что гистидин и аргинин, по-видимому, не существенны для питания младенцев мужского пола, что незаменимыми являются те восемь аминокислот, которые незаменимы в питании взрослых людей, и что в известных условиях проявляется потребность в цистине и тирозине. Данные о потребности в аминокислотах у младенцев и у взрослых сопоставлены в табл. 12. Хотя эти данные носят предварительный характер и требуют дальнейшего подтверждения, интересно отметить, что младенцы нуждаются в относительно больших количествах лизина, треонина и валина, чем взрослые. Весьма любопытно, что относительная потребность в изолейцине у взрослых и у младенцев почти одинакова, тогда как потребность в лейцине у последних значительно выше, [c.125]

    Для ферментативного определения Ы-концевых групп иногда применяют и аминопептидазы — ферменты, которые последовательно отщепляют аминокислоты с Ы-конца полипептидной цепи. Наиболее хорошо изученным и часто применяемым ферментом является лейцинаминопептидаза, выделяемая из почек свиньи. Этот энзим был использован для изучения Ы-концевой последовательности инсулина и рибонуклеазы. В опытах на синтетических пептидах и амидах аминокислот было показано, что весьма медленно отщепляются те Ы-концевые аминокислоты, рядом с которыми стоят лизин, аргинин И ароматические аминокислоты. Эта относительно узкая специфичность действия энзима затрудняет его применение специфичность действия других аминопеп-тидаз изучена недостаточно. [c.75]

    Эта окраска вовсе не является характерной только для аминокислот пептиды, белки н другие аминосоединения также дают ее . Однако она позволяет открывать на бумаге исключительно малые количества аминокислот и пептидов с короткой цепью. Порядок определяемых величин можно видеть по данным табл. 6, хотя абсолютные количества несколько зависят от условий опыта. Тем не менее весьма поучительно сравнить получаемые результаты. Например, можно видеть, что в случае глицина проба с нин-гидрином в 15 раз чувствительнее, чем в случае аргинина, тирозина, лизина или глутаминовой кислоты следовательно, простого взгляда на хроматограмму недостаточно для оценки относительного количества аминокислоты. Иногда при идентификации аминокислоты может помочь оттенок окраски пятна. [c.127]

    Так, Mulder (49, 50) и другие выращивали люцерну, клевер, цветную капусту, шпинат и томаты на фоне молибдена и без внесения этого элемента. При появлении признаков молибденовой недостаточности в клубеньках бобовых и в листьях овощных растений определяли содержание. различных аминокислот. Было установлено, что без молибдена в клубеньках бобовых резко снижалось содержание а-ала ина, аспарагина и глютаминовой кислоты. У шпината, томате и цветной капусты при выращивании растений на нитратном фоне без молибдена уменьшилось содержание глютаминовой кислоты и глютамина. В работе Мининой (14) отмечается, что под влиянием молибдена в растении накапливаются такие аминокислоты, как глютаминовая кислота, серин, аргинин и амид глютамин. Hewitt (46) наблюдал, что уменьшение содержания молибдена в питательной среде приводит 1К снижению содержания свободных аминокислот у цветной капусты. Значительные изменения в аминокислотном составе растений наблюдали под влиянием молибдена Школьник, Боженко и другие исследователи (28, 29). [c.105]

    Эти данные показы15ают, что у животных аргинин синтезируется, но размеры этого синтеза недостаточны для того, чтобы обеспечить интенсивный синтез белков (при наличии друп х аминокислот), имеющий место во время роста молодого организма. [c.376]

    Для томатов и цветной капусты при недостатке молибдена (на нитратах) характерно сильное снижение содержания глутаминовой кислоты, глутамина, аспарагиновой кислоты, аспарагина, глицина, р-аланина и лизина (Hewitt, 1963). Стейнберг (1956) сообщал о необычно высоком содержании лизина в молибден-недостаточном табаке на нитратах. Цветная капуста в отсутствие молибдена на аммиаке, мочевине, нитритах, глутаминовой кислоте часто содержит значительно больше аминокислот (особенно аргинина и серина), чем нормальные растения (табл. 27). [c.106]

    Кислотно-оснданые и буферные свойства. Белки подобно аминокислотам проявляют кислотные и основные свойства. Однако амфотерность белковых молекул обусловлена главным образом наличием кислотно-ос-новных групп в составе боковых радикалов аминокислот белка, а также концевых сс-амино- и а-карбоксильной групп. У белка с четвертичной структурой число концевых амино- и карбоксильных групп равно числу протомеров. Однако их количество недостаточно для того, чтобы обеспечить амфотерность макромолекулы белка. Кислотно-основные свойства и заряд белковой молекулы главным образом определяются наличием полярных аминокислотных радикалов, большая часть которых находится на поверхности глобулярных белков. Кислотные свойства белку придают аспарагиновая, глутаминовая и аминолимонная кислоты, а основные свойства — лизин, аргинин, гистидин. Слабая диссоциация 8Н-группы цистеина и фенольной группы тирозина (их можно рассматривать как слабые кислоты) почти не влияет на кислотные свойства белков. [c.72]

    Частично заменимые аминокислоты аргинин и гистидин синтезируются в организме в недостаточных количествах. Гистидин образуется из АТФ и рибозы, а аргинин синтезируется в реакциях орнитинового цикла. Условно заменимые аминокислоты тирозин и цистеин синтезируются с использованием незаменимых аминокислот тирозин получается из фенилаланина под действием фенилаланингидроксилазы цистеин — из метионина. [c.388]

    Гипераргининемия ме ческое нарушение катаболизма аргинина, об енное недостаточностью фермента аргиназ ни рассматривалось в ГЛ. 30 в связи с метабол кла мочевины. [c.321]

    В мировой литературе описаны случаи наследственного заболевания, сопровождающегося высоким содержанием аргинина в крови, спинномозговой жидкости и м че (Peralta, 1965). Заболевание связано с врожденной недостаточностью аргиназы. При гомозиготном носитель-стве оно протекает чрезвычайно тяжело. Поскольку заболевание сопровождается гипераргининурией, то оно, очевидно, может быть диагностировано на - основании данных лабораторного анализа. Хроматографические методы определения аргинина требуют специального доро- [c.86]

    Содержание аргинина в нормальной моче и плазме крови здорового человека очень мало. По данным Stein (1953), Stein и Moore (1954), в суточной моче (1,5— 2,0 л) содержится 10—20 мг аргинина, а в плазме крови— 1,5 мг/100 мл. Но при врожденном дефекте образования мочевины, связанном с недостаточностью аргиназы, содержание аргинина в моче возрастает в 250— 300 раз, а в плазме — в 10 раз по сравнению с нормой. [c.91]

    В орнитиновом цикле участвует пять ферментов соответственно, известно пять типов наследственных болезней, связанных с недостаточностью какого-либо из этих ферментов. Первичное биохимическое следствие дефекта любого фермента — накопление предшественников субстрата поврежденного фермента. При дефекте аргиназы — последнего фермента цикла мочевины — накапливаются аргинин и предшествующие ему метаболиты при дефекте аргининсукциназы накапливаются аргининянтарная кислота и предшествующие ей метаболиты и т. д. Недостаточность первого фермента цикла — карбамоилфосфатсинтетазы I — ведет к накоплению аммиака и его предшественников, т. е. аминокислот из аминокислот накапливаются главным образом глутамин и аланин. Гипераммониемия и вызываемые ею явления — признак, общий для всех пяти типов наследственных нарушений орнитинового цикла, и притом наиболее опасный признак. Концентрация аммиака может превышать нормальную в 10-20 раз, концентрация глутамина — в [c.350]

    До сих пор мы рассматривали превращение N2 в NH и включение NH4 в состав глутамата и глутамина. Теперь обратимся к биосинтезу других аминокислот. Бактерии, например Е.соИ, могут синтезировать все двадцать аминокислот, входящие в основной набор, тогда как в организме человека образуется лишь половина из них. Аминокислоты, которые должны попадать в организм с пищей, называются незаменимыми, а осталъиые- заменимыми (табл. 21.1). Эти названия отражают потребность организма при определенных условиях. Например, в цикле мочевины синтезируется достаточно аргинина, чтобы удовлетворить потребности организма взрослого, но не растущего ребенка. Недостаточное содержание хотя бы одной аминокислоты приводит к отри- [c.233]


Смотреть страницы где упоминается термин Аргинин недостаточность: [c.465]    [c.270]    [c.130]    [c.153]    [c.368]    [c.294]    [c.446]    [c.32]    [c.32]    [c.397]    [c.397]   
Биологическая химия Изд.3 (1998) -- [ c.465 ]




ПОИСК





Смотрите так же термины и статьи:

Аргинин

Аргинин влияние недостаточности

Семенники, атрофия при недостаточности аргинина



© 2025 chem21.info Реклама на сайте