Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Источники излучения и фильтры

    Чаще всего применяют поглощение в УФ, реже в ИК области. В УФ области применяют приборы, работающие в широком диапазоне—от 200 нм до видимой части спектра, либо на определенных длинах волн, чаще всего на 280 и 254 нм. В качестве источников излучения применяются ртутные лампы низкого давления (254 нм), среднего давления (280 нм) и соответствующие фильтры. [c.91]


    При отделении следовых количеств элементов собственно адсорбционным методом в качестве коллектора применяют чаще всего активированный уголь. Следовые количества элементов при этом связывают в комплекс, например, действием ксан-тогената калия при оптимальной величине pH 6,5—7. Затем раствор пробы фильтруют через маленький бумажный фильтр, в котором находится слой активированного угля. Этот слой получают, нанося 10 см водной суспензии предварительного активированного угля на фильтр. Для определения методом ААС с пламенем в качестве источника излучения следовые количества элементов, сконцентрированных на угле (коэффициент обогащения до 2-10 ), можно перевести в раствор обработкой кислотой. [c.426]

    Оптическая схема. При проведении количественных фотохимических исследований расположение частей оптической схемы (источник света, фильтры, линзы, фотохимическая кювета и приемник излучения) должны отвечать требованиям максимальной интенсивности и получения однородного пучка света внутри кюветы. [c.149]

    Следует отметить, что очень многие органические вещества достаточно интенсивно поглощают при 254 нм. Это все ароматические и полиароматические соединения, гетероциклические соединения, вещества, содержащие в своем составе гетероатомы, карбонильную группу и многие другие. Во всех этих случаях применение простейшего дешевого и надежного УФ-фотометра целиком оправдано. Чувствительность этого прибора достигла 0,001—0,0002 е.о.п. на всю шкалу, а характеристики по шумам и дрейфу заметно улучшились. Появились в продаже для них и полные комплекты кювет от микроколоночных (0,5 — 2 мкп) до препаративных (с длиной оптического пути 0,1 — 0,5 мм). Выпускаются УФ-фотометры, приближающиеся к спектрофотометрам. В них. а качестве источника излучения вмонтирована дейтериевая лампа с широким спектром от 190 до 360 нм, вместо дорогого монохроматора используют фильтр. Если набор нужных длин волн невелик, стоимость такого фотометра с набором фильтров заметно ниже, чем спектрофотометра. [c.151]

    Некоторые источники излучения имеют линейчатый спектр (например, ртутная лампа —254 303 313 365 464 436 546 нм и т. д.), другие — непрерывный спектр (например, дейтериевая лампа — 190—600 нм). Интенсивность их излучения в пределах рабочего диапазона приблизительно одинакова. Необходимую спектральную полосу выделяют двумя различными способами с помощью дифракционных решеток, имеющих 1000—3000 штрихов на 1 мм, и применением интерференционных фильтров с заданной шириной спектральной полосы. В обоих случаях может быть получена спектральная полуширина от 1—2 нм до 10—20 нм. [c.268]


    Источник излучения ИИ создает поток энергии соответствующего вида излучения. Чтобы излучение шло только в область, где располагается контролируемый объект КО, источник излучения И помещен в защитный контейнер ЗК, который, кроме того, снижает загрязнение излучением окружающей среды. Для того чтобы контролируемый объект облучался только в течение определенного времени, необходимого для контроля, на пути излучения установлен затвор 3, управляемый оператором и определяющий время экспозиции с учетом интенсивности прошедшего излучения, измеряемой экспонометром ЭКС. Излучение источника И может содержать компоненты излучений различных видов или спектрального состава, в связи с чем на пути устанавливается фильтр Ф, пропускающий только необходимую часть излучения. Фильтр Ф выполняется чаще всего в виде пластин определенной толщины из материала, хорошо поглощающего мешающую часть излучения. Помимо того, в состав фильтра может входить коллиматор — специальный элемент значительной толщины, часто в виде плиты со сходящимися коническими отверстиями. Коллиматор улучшает конфигурацию поперечного сечения выходящего потока излучения, например, за счет сильного поглощения лучей, выходящих от частей источника, удаленных от его центра, уменьшает эффективные размеры источника, что увеличивает четкость радиационного изображения и повышает разрешающую способность контроля. В контакте с контролируемым объектом находятся компенсатор КМ, эталоны чувствительности ЭЧ и маркировочные знаки М3. [c.313]

    Другой общей проблемой является скапливание пыли под фильтром источника УФ-излучения, что вызывает падение интенсивности ультрафиолета на контролируемой поверхности. При выключенном и остывшем источнике УФ-излучения фильтр необходимо снять и удалить пыль с его задней поверхности, также с лампы (колбы) источника. [c.684]

    Размеры фокального пятна источника излучения определяются размерами основания коллиматора. Коллиматоры обычно снабжаются фильтрами и диафрагмами, позволяющими в некоторых пределах изменять параметры пучка нейтронов. [c.79]

    Рис 83. Химический актинометр. I — источник излучения 2—линза 3 — цветной фильтр 4 —реакционный сосуд . 5 —актинометр. [c.241]

    А — источник рентгеновского излучения Б — щели источника В — фильтр Г — щель образца Д — исследуемый образец Е — свинцовый поглотитель Ж — фотопленка. [c.91]

    Лампа низкого давления представляет собой кварцевую разрядную трубку с двумя электродами, внутри которой содержатся ртуть и инертный газ. Пары ртути возбуждаются высоким напряжением от преобразователя или от катушки Тесла. Энергия излучения концентрируется в узкой области спектра, как показано на рис. 138, в. Если лампа снабжена фильтром Корнинг 7-54 (рис. 139), то она служит простым портативным источником излучения 2537 А (рис. 140, б). [c.285]

    Применение флуориметрического метода к диагностике фитопланктона оказалось чрезвычайно плодотворным. Первые результаты по дистанционной лазерной флуориметрии фитопланктона с борта самолета были опубликованы в 1973 г. 71. Источником возбуждения служил лазер на красителях с ламповой накачкой, генерирующий излучение с длиной волны 590 нм. Эхо-сигнал выделяли интерференционным фильтром с центральной длиной волны Х = 685 нм и детектировали с помощью фотоэлектронного умножителя (ФЭУ). В последнее время за рубежом появились работы по дистанционному (с борта самолета) количественному определению хлорофилла а с использованием калибровки по комбинационному рассеянию воды. В работе [8] в качестве источника излучения использовали лазер на красителе с ламповой накачкой мощностью 200 кВт и генерацией на 470 нм. Эхо-сигналы КР воды (560 нм) и флуоресценции фитопланктона (685 нм) разделяли полупрозрачными фильтрами на соответствующие ФЭУ. В работе [9] использовали лазер Nd + AИГ с длиной волны генерации 532 нм и дифракционный спектрометр с приемником параллельного детектирования, включающим в себя сорок ФЭУ. Система проводит не только спектральные измерения, но и стратификацию распределения фитопланктона, [c.177]

    Основным источником излучения при исследовании спектров поглощения, по-видимому, надолго останется ртутная дуга высокого давления. В области 200—100 см возможно использование источников, представляющих собой тела накаливания, например, глобара. Несколько лучшие результаты дает платиновая лента, покрытая окислами редкоземельных металлов, тория или иттрия [1]. Преимущество ртутной лампы перед телами накаливания в низком уровне ее коротковолнового излучения, что несколько облегчает фильтрацию, которая является одной из основных проблем при работе в длинноволновой области. Поскольку основная доля энергии источника приходится на коротковолновое излучение, пропускание системы фильтров, отсекающих это излучение, не должно превосходить величину порядка Ю %. При этом система не должна слишком сильно уменьшать сигнал рабочей области. К сожалению, эти два требования часто находятся в противоречии из-за невысокой крутизны отсекающей границы большинства фильтров. Практика показывает, что в настоящее время нельзя указать универсальной системы фильтрации длинноволнового излучения, такая система должна быть подобрана для индивидуального прибора и конкретной задачи. Только в этом случае можно добиться максимального светового потока и наилучшего разрешения. Как правило, фильтры с максимальной крутизной имеют довольно высокое пропускание в области высоких порядков решетки, и. наоборот, фильтры, с достаточной степенью надежности подавляющие коротковолновое излучение, имеют низкую крутизну отсекающей границы и плохое пропускание в рабочей области. Это приводит к необходимости комбинировать фильтры различных типов. Кроме того, при разработке системы фильтрации для определенной за-дачи желательно подбирать оптические элементы схемы таким образом, чтобы они облегчали фильтрацию. Так, например, для модуляции светового потока необходимо использовать кристаллы, прозрачные в средней и ближней инфракрасной области. [c.109]


    В УФ-спектроскопии чаше всего применяются приборы двух типов. Один из них, УФ-спектрометр, измеряет поглощение раствором в широком диапазоне длин волны от менее чем 200 нм до видимой части спектра и может сканировать и записывать полный спектр. Прибор другого типа обеспечивает измерение поглощения только на нескольких специфичных длинах волн (обычно 254 и 250 нм), а некоторые приборы этого типа работают только на первой длине волны. В этих приборах в качестве источников излучения используется эмиссия ртутной лампы низкого давления, фильтры и вторичная эмиссия других источников. [c.219]

    Основные трудности при использовании всех анализаторов с широкополосными источниками излучения связаны с низкой интенсивностью ИК-ис-точников в требуемом спектральном диапазоне, а также сложностями при подборе фильтров. [c.483]

    Хотя актинометр усредняет интенсивность во времени и по площади сечения пучка достаточно точно, однако в случае если распределение длин волн в системе источник излучения—фильтр изменяется во времени, то такое усреднение не обязательно будет иметь место. Соответствующая ошибка приобретает практическое значение в тех случаях, если (как это часто бывает) квантовый выход реакционной системы меняется с длиной волны. В тех случаях, когда такое изменение действительно происходит, правильные величины получаются лишь при условии использования высокомонохроматического излучения, достаточную интенсивность которого при проведении фотохимических исследований часто очень трудно получить. [c.241]

    Если в упрощенной схеме фотометра лампу заменить на такой источник излучения. который может излучать монохроматический свет любой требуемой длины волны без применения фильтров, это и будет схемой спектрофотометрического детектора для ВЭЖХ. Описания достаточно сложных оптических схем такого источника излучения можно найти в большинстве руководств по ВЭЖХ. С помощью таких схем из широкого, непрерывного спектра излучения дейтериевой лампы (190—360 нм) и лампы видимого света (длина волны более 360 нм) с использованием голографической решетки вырезается более или менее узкая полоса УФ- или видимого излучения. Это излучение и попадает в сравнительную и рабочую кюветы, которые далее работают по той же схеме, по которой устроен фотометр. Различия между разными конструкциями спектрофотометрических детекторов вызываются более или менее удачными оптическими схемами, более узким или широким пучком монохроматического света, лучшей или худшей воспроизводимостью повторной установки той же длины волны. Различают также УФ-спектро-фотометрические детекторы, использующие в качестве источника излучения только дейтериевую лампу, и работающие в УФ-и видимом диапазонах — они дополнительно оснащаются лампой видимого света, [c.151]

    Схема ультрафиолетового Г. аналогична схеме, приведенной на рис. 7. Имеются также приборы с двумя детекторами излучения без модулятора, в к-рых световые потоки не прерываются. В кач-ве источников излучения обычно применяют ртутные лампы низкого (X = 253,7 нм) и высокого (спектр с большим набором линий) давлений, газоразрядные лампы с парами др. металлов (Х = 280, 310 и 360 нм), лампы накаливания с вольфрамовой нитью, водородные и дейтериевые газоразрядные лампы. Приемники излучения-фотоэлементы и фотоумножители. При использовании неселективного источника излучения избирательность измерения в большинстве приборов обеспечивают с помощью оптич. фильтров (стеклянных или интерферен-ц юнных). [c.457]

    Единого универсального детектора для ЖХ не существует. Наиб, распространенный и высокочувствит. -УФ фотометрич. Д. х., в к-ром анализируемые в-ва детектируются путем измерения кол-ва излучения, абсорбируемого при прохождении света через проточную ячейку детектора (объем ячейки 2-10 мкл). Детектор используют либо в диапазоне 180-400 нм, либо на определенных длинах волн, чаще всего 254 нм. Кондентращ1Я в-ва определяется по закону Бугера-Ламберта-Бера. Источники излучения-ртутная лампа низкого давления, дейтериевая лампа с соответствующими фильтрами. [c.27]

    Твердые отходы (отработанное ядерное горючее, источники излучения, оборудование, ионообменные смолы, фильтры, остатки выпаривания р-ров-соляные кеки, горючие материалы, биол. объекты) считаются радиоактивными, если их уд. активность превышает для р-излучателей 74 кБк/кг, для а-излучателей 7,4 кБк/кг, для трансурановых элементов 0,37 кБк/кг. Для отходов с преимуществ, содержанием у-излучателей нормируется величина (/4/ш)Гси с размерностью Гр м с кг , где /4-активность излучателя в Бк, ш-его масса в кг, Г(-и-у-постоянная (Гр-м х [c.164]

    Ряд источников излучения имеет спектральные линии подходящей интенсивности, распределенные соответствующим образом в избранной спектральной области. Точные значения положения характерных линий кварцево-ртутной дуги — 253,7 302,25 313,16 334,15 365,48 404,66 и 435,83 нм. Шкалу длин волн можно также калибровать при помощи соответствующих стеклянных фильтров, которые имеют приемлемые полосы поглощения в видимой и ультрафиолетовой областях. Широко используются стандартные стекла, содержащие дидимий (смесь празеодима и неодима). Лучшим считается стекло, содержащее гольмий. Точные значения положения характерных максимумов фильтров из гольмиевого стекла — 241,5 1 281,5 1 360,9 1 и 536,2 3 нм. Фильтры из гольмиевого стекла можно получить из некоторых национальных учреждений и коммерческих источников. Эксплуатационные качества непроверенного фильтра должны быть установлены по отношению к фильтру, подвергнутому правильной проверке. [c.40]

    Измерение интенсивности флуоресценции можно провестй с помощью простого флуорометра с фильтрами (иногда прибор называют флуориметром). Такой прибор состоит из источника излучения, первичного фильтра, камеры для вещества, вторичного фильтра и системы обнаружения флуоресценции. В большинстве таких флуорометров детектор располагается под углом 90° к падающему лучу, что позволяет падающему излучению проходить через испытуемый раствор без загрязнения выходного сигнала, получаемого детектором флуоресценции. Однако на детектор неизбежно попадает некоторое количество падающего излучения в результате внутреннего рассеивания — свойства, присущего самим растворам таким же образом влияет присутствие пыли или других твердых веществ. Для удаления этого остаточного рассеивания используют фильтры. Первичный фильтр отбирает коротковолновое излучение, способное вызывать возбуждение испытуемого вещества, в то время как вторичный фильтр, обычно строго отсекающего типа, пропускает флуоресценцию при большей длине волны, но блокирует рассеянное возбуждающее излучение. [c.53]

    Возбуждение ртутной лампой при длине волны 254 нм до длины волны ксеноно-вого источника излучение проходит через экранирующие пли монохроматические фильтры [c.213]

    Способ освещения щели спектрографа не приводится, поскольку соответствующая осветительная система поставляется изготовителями спектрографов (например, с промежуточным изображением). Если интенсивность источника излучения слишком высока, то в осветительную систему необходимо ввести светофильтр. Это отмечается в таблицах после цифровых данных, характеризующих ступенчатый ослабитель. Напри.мер, символы 100/10 + 10 означают, что вфоме ступенчатого ослабителя с пропусканием 100/10% на щели установлен дополнительный фильтр с пропусканием 10 %. [c.665]

    Возбуждение спеБпров комбинационного рассеяния осуществляется мощными импульсными лазерными источниками излучения. Для выделения аналитических линий используются монохроматоры. Для подавления засветки на длине волны зондирующего излучения и неселективно рассеянного света применяются специальные фильтры. Для регистрации интенсивности рассеянного излучения используются фотоэлектронные умножители (ФЭУ) или фотодиодные матрицы. [c.922]

    Выражение (79) отражает характер зависимости коэффициента ослабления амплитуды гармонических составляющих контролируемого распределения ц (х, у, г) от основных конструктивных, физических и расчетных параметров системы, размеров апертуры детекторов и фокусного пятна источника излучения, геометрического увеличения рентгенооптики, постоянной времени детектора и всего измерительного канала, скорости движения луча в процессе сканирования, интервала накопления и интервала дискретизации при измерении, вида ПФ предварительного интерполяционного фильтра измерительных данных, интервала расчетной дискретизации проекций при свертке и обратном проецировании, вида ядра свертки, закона интерполяции при обратном проецировании, интервала дискретизации матрицы, на котором восстанавливается выходное распределение, вида функции рассеяния дисплея и от направления расположения воспрозводимой гармонической структуры в пространстве (х, , г). [c.134]

    ИСТОЧНИК излучения (вольфрамовая лампа, дуга в парах Хе и Н , газоразрядная водородная или деитериевая лампа, дневной свет) 2 — совместно действующая оптика (линзы, зеркала, щели, диафрагмы) 5 —держатель образца (пробирка, кювета, диск из КВг) 4 — устройство для дисп мкии (абсорбционный фильтр, интерференционный фильтр, решетка. призма) 5 — приемник (глаз, вентильный фотоэлемент, электровакуумпьи фото ->ле-мент, фотоэлектронный умножитель, термопара) 6 — указатель (гпльепно-метр, электронный осциллограф, регистрирующий потенциометр). [c.245]


Смотреть страницы где упоминается термин Источники излучения и фильтры: [c.261]    [c.539]    [c.52]    [c.372]    [c.276]    [c.213]    [c.440]    [c.287]    [c.276]    [c.287]    [c.218]    [c.124]    [c.81]    [c.82]    [c.107]    [c.236]    [c.110]    [c.125]    [c.107]   
Смотреть главы в:

Физические методы органической химии Том 4 -> Источники излучения и фильтры




ПОИСК





Смотрите так же термины и статьи:

Источники излучения



© 2025 chem21.info Реклама на сайте