Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты Кетокислоты Кислоты жирные

    Нетрудно видеть, что при этом образуется жирная кислота, содержащая на 1 атом углерода меньше, чем исходная аминокислота. Распад полученной жирной кислоты до СОг и НаО совершается обычным, уже известным нам путем — путем р-окисления. Некоторые а-кетокислоты, например пировиноградная, могут окисляться до СОг и НгО, непосредственно вовлекаясь в цикл трикарбоновых кислот. [c.343]

    КАРБОНОВЫЕ КИСЛОТЫ, орг. соед., содержащие карбоксильную группу СООН. По кол-ву этих групп различают одно-, двух- и многоосновные к-ты (см. также Дикарбоновые кислоты). Могут содержать Hal, а также группы NHj, С=0, ОН (соотв. галогенкарбоновые кислоты, аминокислоты, альдегида- и кетокислоты, оксикислоты). Алифатич. к-ты, у к-рых число атомов С в молекуле больше 6, относят к высшим жирны. кислотам. [c.326]


    Помимо аммиака, продуктами дезаминирования являются жирные кислоты, оксикислоты и кетокислоты. Для животных тканей, растений и большинства аэробных микроорганизмов преобладающим типом реакций является окислительное дезаминирование аминокислот, за исключением гистидина, подвергающегося внутримолекулярному дезаминированию. [c.432]

    В процессе дезаминирования происходит отщепление от аминокислоты аминогруппы, которая превращается в аммиак. Помимо аммиака, продуктами дезаминирования являются жирные кислоты, окси- и кетокислоты, т. е. без-азотистые соединения, которые затем используются для синтеза углеводов, липидов и других соединений. [c.371]

    Установлено, что а-кетокислоты, возникшие в процессе дезаминирования а-аминокислот, могут подвергаться в животных тканях декарбоксилированию и одновременному окислению в жирную кислоту. Это превращение можно представить следующей схемой  [c.343]

    Первой ступенью в этих цепях реакций является переаминирование, приводящее к образованию а-кетокислот эти реакции были показаны в ряде систем (табл. 22). Остальные этапы аналогичны реакциям окисления жирных кислот и реакциям окислительного распада аминокислот с разветвленной цепью. [c.366]

    Методы синтеза а-аминокислот действие аммиака на галогензамещенные жирные кислоты, циангидринный метод (модификация Н. Д. Зелинского), через ацето-уксусный эфир (В. В. Феофилактов), через малоновый эфир, иза-кетокислот. Синтез Р- и (о-аминокислот. Отношение а-аминокислот к нагреванию. Физико-химические свойства а-аминокислот. а-Аминокислоты как внутренние соли изоэлектрическая точка. Оптическая активность природных а-аминокислот (L-ряд), их изображение с помощью проекций Фишера. Химические свойства а-аминокислот. Реакции, свойственные карбоновым кислотам образование солей, эфиров, галогенангидридов. Реакции, свойственные аминам образование солей с кислотами, действие азотистой кислоты, образование N-ацильных и N-алкильных производных, взаимодействие с альдегидами. Реакции переаминирования, окислительного дезаминирования и де- [c.188]

    Другим основным конечным продуктом тканевого дыхания, кроме воды, является углекислый газ. Он образуется в организме за счет декарбоксилирования кетокислот, которые возникают вследствие дегидрирования и гидратации различных углеводов, жирных кислот и аминокислот. В результате декарбоксилирования кетокислот выделяется СОа и образуется кислота с меньшим количеством углеродных радикалов. Эти кислоты подвергаются дальнейшему окислению путем дегидрирования и гидратации до кетокислот, которые снова декарбоксилируются, пока не образуется ацетил-КоА. Последняя включается в цикл трикарбоновых кислот и окисляется до СОа и [c.136]


    Особенности метаболизма в печени. Печень обеспечивает источниками энергии мозг, мышцы и периферические органы. Это глюкоза, кетоновые тела. Сама печень в качестве источника энергии использует кетокислоты, образующиеся при распаде аминокислот. Поэтому основное назначение гликолиза в печени — образование строительных блоков для биосинтеза жирных кислот, холестерина. [c.438]

    Пиридоксалевые ферменты принимают участие в реакциях переаминирования а-амино- и а-кетокислот (трансаминирование), в реакциях рацемизации и декарбоксилирования аминокислот, дезаминирования оксиаминокислот, десульфирования серусодержащих аминокислот и в ряде других процессов (например, в биосинтезах жирных кислот). [c.275]

    Дальнейшая судьба кетокислоты зависит от типа той аминокислоты, из которой она образовалась. Вообще говоря, катаболизм каждой аминокислоты требует особого изучения. Так, например, глицин представляет собой простейшую аминокислоту, однако в обмене веществ он может участвовать в образовании муравьиной и уксусной кислот, этаноламина, серина, аспарагиновой кислоты, жирных кислот, рибозы, пуриновых и пиримидиновых оснований и протопорфирина. Таким образом, глицин может играть важную роль в обмене углеводов, жиров, белка, нуклеиновых кислот и гемоглобина, что является прекрасной иллюстрацией взаимоотношений, существующих в организме между разными типами обмена. Другие аминокислоты также претерпевают сложные метаболические превращения, описание которых выходит за пределы данной книги. Обычно аминокислоты разделяют на гликогенные и ке-тогенные, подчеркивая тем самым их способность образовывать глюкозу и гликоген, т. е. участвовать в углеводном обмене, или же вступать в реакции обмена липидов и образовывать кетоновые тела. [c.381]

    Кофермент А содержит активные SH-группы и катализирует реакции переноса ацильного остатка in vivo, в частности в биосинтезе жирных кислот. Пиридоксальфосфат катализирует реакции трансаминирования и декарбоксилирования аминокислот, в то время как тиаминпирофосфат участвует в метаболизме пентоз и в биохимических реакциях ос-кетокислот. [c.137]

    Нормальная жизнедеятельность организма может нарушаться при избытке в крови самых разнообразных продуктов обмена азотистых и других шлаков (креати-нин, мочевая кислота, гуанидиновые основания, полиамины, фенол, индол, меркаптаны и др.), нейромедиаторов (адреналин, норадреналин, серотонин, ацетил-холин), аминокислот, полипептидов средней молекулярной массы, включая полипептидные гормоны, триглицериды, насыщенные и ненасыщенные жирные кислоты, кетокислоты, сахара и продукты их метаболизма, компоненты желчи и др. Сорбционное удаление избытка этих веществ из крови больных в большинстве случаев ведет к улучшению их состояния, а иногда и к полному выздоровлению. [c.564]

    Подводя итог вышеизложенному, можно сказать, что при паде а-аминокислот из них образуется а-к е г и-к и слот а. Аминогруппы аминокислот при этом либо освобождаются в виде аммиак а, либо (главным образом) превращаются в мочевину (при этом половина азота проходит через стадию аммиака, а другая половина через стадию аспарагиновой кислоты). Аммиак и кетокислоты частично используются для ресинтеза аминокислот и для синтеза других азотистых веществ. Другая часть а-к етокислот путем декарбоксилирования укорачивается на один атом С и превращается в жирную кислоту, окислительный распад которой до СОз и НгО совершается путем (Ь-о кисления и при участии цикла трикарбоновых кислот. [c.343]

    Нисман и Вине [191] обнаружили, что в аэробных условиях аминокислоты, являющиеся донаторами водорода, превращаются преимущественно в соответствующие жирные кислоты однако наряду с этим появляются небольщие количества соответствующих а-кетокислот. На основании этих наблюдений механизм реакций Стикленда может быть представлен следующей схемой  [c.198]

    Образование органических кислот и аминокислот связано, как видно из вышеизложенного, с фиксацией СО2 путем р-карбоксилирования кетокислот, оОразущихся в результате превращений 3-ФГК. ООычно большая часть (80-85 ь) поглощенного углерода поступает в цикл путем карбоксилирования РдФ. Однако связывание СО путем Д -карбоксилирования кетокислот, приводящее к образованию аминокислот и жирных кислот и в дальнейшем к синтезу из них белков и жиров, может достигать 20-30% и больше. В опытах с хлореллой в некоторых условиях больше 50% радиоактивного углерода было обнаружено в белках и жирах ( Са1т1п, ВаввЬеш, 1962). [c.256]

    Одним из важнейших результатов применения меченых атомов к изучению живых организмов было, как уже указывалось, открытие высокой динамичности процессов распада и ресинтеза жиров, углеводов и белков, ведуш,их к быстрому их обновлению в тканях и органах. В работах Шенгеймера [1061 и других биохимиков это было наглядно показано для жиров и углеводов путем применения дейтерия и изотопов углерода, а для белков, главным образом, путем применения тяжелого азота, радиоактивных изотопов фосфора и серы. При введении в пищу жирных кислот, меченных дейтерием в радикале, этот дейтерий быстро появляется в жирах всех органов и, прежде всего, в жировых запасах, откуда он переходит в другие места. Средняя продолжительность пребывания каждого атома меченого водорода в теле позвоночных близка к двум неделям. При кормлении крыс гидролизатом казеина, содержавшим дейтерий, было установлено, что за три дня обновляется 10% протеинов печени и 25% протеинов мускулов. При кормлении казеином с цитратом аммония, меченным тяжелым азотом, последний через несколько дней был обнаружен почти во всех аминокислотах тела (но не в несинтезирующемся в нем лизине), в креатине мышц, гиппуровой кислоте мочи и проч. Если животное имело бедную белками пищу, то оно усваивало около половины вводимого азота. При нормальной диете, когда животное находилось в состоянии азотного равновесия, усвоение азота уменьшалось, но качественная картина оставалась той же. Столь же быстрое усвоение и распределение азота в организме наблюдается при кормлении глицином, лейцином, тирозином и другими аминокислотами, меченными тяжелым азотом. Азот из пищи особенно быстро усваивается в виде синтезируемых глютаминовой и аспарагиновой кислот. Это, очевидно, связано с быстрым течением открытых А. Е. Браунштейном и М. Г. Крицман реакций энзиматического переаминирования этих кислот с а-кетокислотами, а также с их исключительной ролью в общем обмене аминокислот и протеинов [11]. [c.496]


    Измерение pH в крови и в тканях показало, что он изменяется в очень незначительных пределах и что реакция крови и тканей слабощелочная (pH равно 7,3—7,4). Между тем, изучение процессов обмена веществ позволяет сделать вывод, что в организме беспрестанно возникают кислоты. При распаде углеводов образуется ряд промежуточных продуктов — кислот (фосфоглицериновые кислоты, фосфопировиноградная и люлочная кислоты ди- и трикарбоновые кислоты). Распад жиров начинается с процесса их омыления, который завершается появлением, наряду с глицерином, жирных кислот. К промежуточным продуктам распада глицерина относятся те же кислоты, которые возникают и при распаде углеводов. Обмен жирных кислот приводит к образованию уксусной, ацетоуксусной и оксимасляной кислот. Распад аминокислот сопровождается возникновением а-кетокислот и аммиака. Из всех перечисленных промежуточных веществ щелочными свойствами обладает только один аммиак. Да и в отношении аммиака следует указать, что известная часть его не освобождается из аминокислот в свободном состоянии, а переносится на другие вещества (на а-кетокислоты аминоферазами) (стр. 187), с образованием в конечном счете нейтрального [c.207]

    В анаэробных условиях основной реакцией превращения аминокислот является реакция Стикленда - сопряженное окисление и восстановление двух аминокислот одна из них играет роль окислителя, другая - восстановителя. В результате реакции Стикленда из аминокислот образуются жирные и кетокислоты и выделяется аммиак. Окисление одной молекулы аланина в клетках С/, sti klandii сопряжено с восстановлением двух молекул глицина. Аминокислоты аланин, лейцин, валин, фенилаланин, серии, гистидин, изолейцин, метионин, орнитин, цистеин, аспарагиновая и глутаминовая кислоты являются донорами водорода, а глицин, пролин и аргинин -акцепторами. [c.429]

    Представления о цикле трикарбоновых кислот сформулированы X. Кребсом в 1937 г. (друше название процесса — цикл Кребса). ЦТК выполняет две важные задачи 1) полное окисление многих субстратов (в том числе углеводов и жирных кислот, показанных на схеме), что обеспечивает клетку энергией, и 2) обеспечение промежуточных продуктов для синтеза ряда клеточных компонентов, в частности аминокислот — аспарагиновой и глутаминовой кислот, получаемых прямым аминированием кетокислот окса-лоацетата и 2-оксоглутарата (10 и 11 на схеме). Из них (и аланина) путем переаминирования могут быть получены многие другие аминокислоты, и в конечном счете — белки. [c.66]

    В принципе, возможно восстановительное аминирование любой кетокислоты. Однако активность всех природных дегидрогеназ аминокислот, за исключением глутамат- и аланиндегидрогеназы, ничтожна, поэтому синтез всех остальных протеиногенных аминокислот путем восстановительного аминирования практического значения не имеет. Только аланин и глутаминовая кислота возникают таким способом из пировиноградной и а-кетоглутаровой кислот, являющихся нормальными промежуточными продуктами распада углеводов и жирных кислот. [c.276]


Смотреть страницы где упоминается термин Аминокислоты Кетокислоты Кислоты жирные : [c.591]    [c.116]    [c.427]    [c.440]    [c.591]    [c.342]    [c.383]    [c.360]    [c.93]    [c.220]    [c.192]    [c.319]    [c.348]    [c.236]    [c.171]   
Биологическая химия Изд.3 (1998) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислоты жирного

Кетокислоты



© 2025 chem21.info Реклама на сайте