Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий отношение к аммиаку

    Подобно алюминию, галлий обладает амфотерными свойствами. Минеральные кислоты медленно растворяют его на холоду и быстро при нагревании. Растворяется и в щелочах, образуя галлаты. Легко взаимодействует с галогенами при незначительном нагревании, при более сильном — с серой. С водородом и азотом непосредственно не соединяется. При нагревании в атмосфере аммиака выше 900° образует нитрид галлия. При высокой температуре разъедает материалы сильнее, чем любой другой расплавленный металл. Кварц устойчив по отношению к чистому галлию вплоть до 1150°, но окисленный галлий начинает разъедать кварц при гораздо более низкой температуре. Алунд устойчив против действия галлия до 1000°, графит — до 800°, стекло пирекс — до 500°. Из металлов наиболее стоек бериллий (до 1000°), вольфрам (до 300°), тантал (до 450°), молибден и ниобий (до 400°). Большинство же металлов, в том числе медь, железо, платина, никель, легко взаимодействуют при нагревании с галлием [6]. [c.226]


    Сандеран [242] вначале готовил окисно-алюминиевый катализатор разложением сульфата при температуре красного каления. Позднее ему удалось повысить активность и уменьшить дегидратирующие свойства окиси алюминия, приготовленной через стадию образования А1 (0Н>з, которая осаждалась разбавленной серной кислотой в легко отмываемой форме из раствора алюмината натрия. После многократной промывки холодной, а затем кипящей водой окись алюминия сушилась при низкой температуре. Если осадок обрабатывался сульфатом алюминия и аммиаком или карбонатом натрия, продукта получалось много, но он трудно отмывался. Было показано, что более тщательная промывка увеличивает каталитическую активность получаемого катализатора. При недостаточной промывке осадков возможно образование активных катализаторов, неселективных в реакции дегидратации по отношению к реакциям дегидрогенизации, что и наблюдалось некоторыми авторами. [c.169]

    Потерь по первым двум причинам можно легко избежать. Выпадение кальция в виде фосфата во время осаждения аммиаком зависит от соотношения между содержанием фосфат-ионов и содержанием ионов железа (III) и алюминия в растворе. Если железо находится в значительном избытке, то кальций не выпадает если преобладают кальций и фосфат-ионы, что имеет место при анализе фосфатных пород, то практически весь кальций переходит в осадок. Опыты показали, что при двукратном осаждении железа или алюминия добавлением аммиака в небольшом избытке к раствору, содержащему 0,05 г окиси кальция, 0,005 з пятиокиси фосфора и десятикратное количество окиси железа или окиси алюминия по отношению к Са , выделяющийся осадок не содержит кальция. Эти опыты, воспроизводящие обычные з словия анализа горных пород, показывают, что в таких условиях потеря кальция при осаждении полуторных окислов аммиаком не произойдет. Если фосфор преобладает и желают определить только один кальций, то аналитик имеет для этого несколько способов, из которых, однако, ни один не свободен от воз ражений. [c.704]

    Синтез аминов проводят в газовой фазе при 380—450 °С и 2—5 МПа. Давление требуется для повышения производительности установки, уменьшения габаритов аппаратуры и подавления побочной дегидратации спирта. Катализатором служит активный оксид алюминия или алюмосиликат, иногда с добавками промоторов. В этом оформлении реакция является типичным гетерогенно-каталитическим процессом, а ее небольшой тепловой эффект позволяет использовать адиабатические реакторы со сплошным слоем стационарного катализатора. Мольное отношение аммиака и спирта (метанол или этанол) составляет 4 1, причем первичные, вторичные и третичные амины можно получать в любом соотношении, возвращая на реакцию ту или иную часть каждого амина (чаще всего триметиламина). Осуществляется и рециркуляция избыточного аммиака, непревращенного спирта и простого эфира. [c.268]


    Если смесь окиси углерода и аммиака, взятых в отношении 20 1, пропускать при 700° С над окисью алюминия, конверсия аммиака в синильную кислоту составляет 65% [9]. [c.368]

    Если пропускать над окисью алюминия смесь окиси углерода и аммиака, взятых в отношении 20 1, то степень превращения аммиака в цианистый водород при 700° равняется 65% [12]. Этот процесс экономически выгоден только в том случае, когда имеются обильные ресурсы дешевой окиси углерода [7]. [c.377]

    Нитрид алюминия частично образуется при сгорании металла на воздухе, хотя и в очень малых пропорциях по отношению к оксиду. Существует несколько способов получения A1N действием на нагретый металл аммиаком, взаимодействием азота и сульфида алюминия. Наконец, нитрид алюминия можно получить по реакции [c.151]

    При получении носителей для катализаторов используют гидроксохлориды алюминия и метод быстрой коагуляции гидрозоля в капле (метод углеводородно-аммиачной формовки). Для этого в водный раствор нитрата алюминия (40 г/л) приливают 15 % водный раствор аммиака до рН= 10. Тонкодисперсный осадок гидроксида алюминия отфильтровывают и отмывают от аммиака горячей водой, затем гидроксид подкисляют НС1 (р = = 1,19 г/см ) до pH = 4 (мольное отношение НС1/АЬОз = 0,16/1). [c.82]

    За последние пятьдесят лет в области развития методов определения элементов и выяснения теоретических основ аналитических методов достигнуты крупные успехи. Многие элементы как сами но себе, так и в простейших соединениях могут быть определены с большой точностью. Однако приходится сознаться, что для анализа более или менее сложных смесей, в которых обычно встречаются элементы, до сих пор еще не выработано методов, на точность и правильность которых можно было бы вполне положиться, т. е., иными словами, методы разделения элементов в основном остаются до сих пор неизменными, а новейшие методы их определения в отношении селективных возможностей мало чем отличаются от старых. Так, например, известны точные условия для определения алюминия путем осаждения его аммиаком, но перед аналитиком все же стоит задача отделить сначала алюминий от тех разнообразных элементов, в смеси с которыми он обычно встречается и которые также осаждаются аммиаком. [c.21]

    Синтез аминов из спиртов проводится в газовой фазе при 380— 450 °С и 50 ат. Давление применяют для повышения производительности установки и подавления побочных процессов дегидратации спирта. Катализатором служит активная окись алюминия, и в этом оформлении реакция является типичным гетерогеннокаталитическим процессом. Мольное отношение аммиака и спирта (метилового или этилового) составляет около 4 1, причем нежелательный продукт реакции (чаще всего триалкиламип) возвращается на алкилирование и циркулирует в системе. [c.387]

    Критерием для разделения катионов 3-й группы на подгруппы является отношение их к действию аммиака в присутствии хлорида аммония, подавляющего диссоциацию основания. При этих условиях превышенными оказываются только произведения растворимости гидроксидов алюминия, хрома(1И) и железа(1И), которые и выпадают в осадок. Другие катионы 3-й группы остаются в растворе. Поэтому [c.138]

    Механизм действия промотора может зависеть также от увеличения числа активных атомов или их групп на поверхности катализатора, или может зависеть от изменения природы активных атомов, так что в единицу времени может происходить большее число превращений. Отношение числа активных атомов к общему числу атомов железа в катализаторе, применявшемся для синтеза аммиака, было найдено равным 1 2000 для чистого железа и окол 1 200 для железа, промотированного окисью алюминия или алюминатом калия [11, 163]. Найдено, что большее количество кислорода может быть удер- [c.364]

    Синтез аммиака с катализатором, состоящим из железа, окиси алюминия и окиси калия Отравляется небольшими концентрациями (0,32%) паров воды количество кислорода сохраняется катализатором пропорциональным отношению квадратных корней из упругостей паров воды и водорода. Температура 450 96 [c.407]

    Конденсация спирта с аммиаком в гетероциклические основания, например пиридин Окиси металлов на силикагеле одни или с добавкой окиси алюминия окись цинка и силикагель или окись алюминия силикагель, окись цинка и окись алюминия в отношении 72 20 10 окись кадмия, силикагель и окись алюминия 708 [c.440]

    Ход анализа. Взвешенный осадок от аммиака сплавляют, как описано выше (см. Осаждение фенилгидразином ), и растворяют плав в воде или разбавленной (5 95) серной кислоте, последнее — в тех случаях, когда присутствуют элементы, образующие легко гидролизующиеся соли, например титан или цирконий. Прибавляют достаточной количество прозрачного насыщенного раствора чистой винной кислоты, чтобы впоследствии удержать алюминий и др. в растворе винная кислота не должна содержать железа и других мешающих элементов большого избытка ее следует избегать, особенно в тех случаях, когда в фильтрате надо будет ее разрушать достаточно 3—4-кратного её количества по отношению к массе осадка от аммиака. , [c.115]


    Важное исключение, однако, мы имеем в групповом осаждении аммиаком это ос Ждение нельзя применять для отделения железа, алюминия и других элементов от кобальта, как это делается в отношении умеренных количеств никеля. Захват кобальта осадком от аммиака значителен, даже при наличии малых количеств кобальта и при двукратном осаждении железа и алюминия [c.470]

    Импульсная хроматографическая методика позволила изучить также изменение в процессе работы каталитической активности никелевых катализаторов в отношении дегидроциклизации [125]. Катализаторы готовили осаждением гидроокисей никеля и алюминия гидроокисью аммиака из водных растворов с последующим восстановлением никеля водородом при 360° С [121,135]. На рис. 1.46 показана постепенная разработка катализатора Ш/А12О3 в процессе дегидроциклизации к-гексана при 360° в токе гелия. Исследованию были подвергнуты два образца катализатора N1 203 с содержанием никеля 32,8% (№ 1) и 50,3% (№ 2). Видно, что первые порции введенного импульсно к-гексана полностью [c.332]

    Тодт [9], например, полагает, что аммиак высокой чистоты при температурах от —20° С до +50° С не агрессивен по отношению к алюминию и его сплавам. По его мнению, поверхность металла цокрывается продуктами реакции взаимодействия алюминия с аммиаком, что защищает металл от дальнейшего воздействия среды. Это, однако, справедливо только в отношении общей скорости коррозии, которая, действительно, незначительна при отсутствии примесей в аммиаке и не превышает 0,003 мм1год. Известно, что сплавы на основе алюминия подвергаются интенсивной тачечной коррозии в среде аммиака [12, 13]. Так, Миссан [12], изучая коррозионную стойкость алюминия и его сплавов в аммиаке в зависимости от состава исследуемого материала, пришла к выводу, что точечная коррозия заметно проявляется на поверхности сплавов с содержанием железа более 0,15%. При этом точечная коррозия происходит как в жидкой, так и в газовой фазе. В исследованиях ирпользовался аммиак, отвечающий требованиям ГОСТ 6221—52, с содержанием влаги не более 0,038—0,041%. Нефедовой [13] было изучено влияние следов влаги и кислорода, растворенных в аммиаке, при 20 и 50° С. Объектом исследования служил технический алюминий с примесями 0,25% 81, 0,27% Ге, 0,05% Си и следами Mg и Мп. [c.150]

    При действии небольших количеств концентрированной серной кислоты, триметиламина или хлорида алюминия хлораль образует различные твердые полимеры — метахлораль и др. Следует особо отметить отношение хлораля к воде, аммиаку и спирту. Он почти моментально присоединяет эти вещества, образуя твердые, хорошо кристаллизующиеся соединения — х л о р а л ь г и д р а т (т. пл. 57°), хлоральаммиак и хл0ральалк010лят (т. пл. 46 )  [c.313]

    Пропускание через катализатор Р1 - А12О3 - Р, отравленный сернистыми и азотистыми соединениями, углеводорода, не содержащего серы и азота, приводило к восстановлению активности до первоначального уровня. Те же результаты были получены при обработке катализатора водородом при повышенной температуре (450-500 °С). Таким образом, в изученных условиях отравление катализатора - А12О3 - Р было обратимым. В подобных концентрациях и условиях сера является ядом для данного катализатора в реакции дегидрирования, связанной с действием металлических центров, тогда как азот не влияет на его дегидрирующие свойства. Токсичность соединений серы и азота в виде сероводорода и аммиака объясняется взаимодействием этих соединений с поверхностными атомами металла и донорно-акцепторными центрами фторированного оксида алюминия. Следует предположить, что сера образует с платиной соединения, обладающие пониженной активностью в реакции дегидрирования в данных условиях. Что касается азота, то отсутствие наблюдаемого эффекта в реакции дегидрировакия циклогексана связано с превращением аммиака (в присутствии воды) в ион аммония, экранированная структура которого делает его нетоксичным по отношению к платине. Кроме того, большая часть аммиака должна связываться кислотными центрами катализатора. Слабое влияние серы при ее массовой доле до 0,01% на изомеризацию н-гексана или н-пентана на алюмоплатиновом [c.87]

    Биологическое поражение нефтяных масел существенно повышает их коррозионную активность по отношению к металлам, в том числе к алюминию и его сплавам, не корродирующим при контакте с маслами в обычных условиях эксплуатации. Это связано с усилением химической коррозии из-за образования в масле при жизнедеятельности микроорганизмов таких агрессивных веществ, как органические и минеральные кислоты, аммиак, свободная сера, двуокись углерода, сероводород. Может наблюдаться Также электрохимическая коррозия— на отдельных участках поверхности металла образуются колонии микроорганизмов (в виде наростов), что усиливает аэрацию, увеличивает концентрацию кислорода на этих участках и создает там-разность потенциалов. Другой вид электрохимической коррозии возникает в результате жизнедеятельности сульфатвосстанав-ливающих бактерий, под действием которых из сульфатов образуются ионы серы, реагирующие затем с металлом, образуя сульфиды. Этот процесс получил название катодной деполяризации. Коррозии способствует склонность многих микроорганизмов к разрушению [c.71]

    На одном из заводов, занимающихся химической переработкой нефти, бенз,онитрил производят следующим образом [22]. Аммиак и толуол, взятые в молярном отношении 1 2, пропускают при 500—550° над катализатором из окиси молибдена или алюминия. Время контакта выбирают настолько [c.380]

    Опыт 23. Получение гидроксида алюминия и его амфотерность. Получите А1(0Н)з и исследуйте его отношение к кислотам, щелочам и раствору аммиака. Сделайтр выводы о химической природе А1 (ОН)3. [c.97]

    Так же как другие сильно поляризующие катионы с благородногазовой малодеформирующейся электронной оболочкой (например, Ве +, Mg2+, см. с. 44), АР+ в своих комплексных соединениях в большей мере тяготеет к образованию связей с жестким кислородом, а не с мягким азотом. В этом отношении характерно, что гидроокись алюминия, легко растворяющаяся в избытке щелочи (образуются гид-роксокомплексь со связью А1—О), не взаимодействует с аммиаком связь А1 +—NH3 не конкурентоспособна по отношению к связи АР+—О ". Поэтому, если нужно количественно осадить А1(0Н)з из растворов солей А1 (П1), в качестве источника ионов ОН используют аммиак — выпавший осадок А1(0Н)з не растворяется в избытке осадителя (в отличие от действия щелочей), так как концентрация ОН -ионов недостаточна для образования комплексных алюминатов типа [А1(0Н)б-л (Н20)х] + , а молекулы NH3 при избытке Н2О в координационную сферу А1(1П) войти не могут. [c.61]

    Нитриды. Нитриды металлов (т. е. соединения с азотом электроположительных элементов) во многих отношениях сходны с силицидами. Их и делят обычно (Г. В. Самсонов) на ионные, ковалентные и металлоподобные, как это принято по отношению к силицидам. Металлы I и II групп, обладающие валентными s-электронами, образуют нитриды ионного типа, а алюминий, галлий, индий и т. п., для которых характерно наличие / -электронов на внешних оболочках, — нитриды ковалентного типа. Переходные металлы дают металлоподобные нитриды. Формально можно рассматривать нитриды первых двух типов как производные аммиака (LisN, K3N, AIN) — они действительно под действием воды разлагаются с выделением аммиака. Нитриды щелочных и щелочноземельных металлов неустойчивы (особенно во влажном воздухе). Нитриды алюминия и бора с кислотами практически не реагируют. Нитрид бора BN — боразон — отличается исключительной твердостью (близок по твердости к алмазу) и термостойкостью — выдерживает температуры до 2000°С. [c.293]

    Практически полного выделения германия из растворов добиваются при его соосаждении с гидроокисями тяжелых металлов или алюминия за счет образования нерастворимых германатов [1]. Чаще всего пользуются соосаждением с железом. Для полного соосаждения отношение Ре Се в растворе должно быть порядка 25—100 При наличии в растворе магния достаточно только 10—15-кратного количества железа. При соосаждении с железом (П1) или алюминием pH раствора доводят до 4,5—6, с медью или никелем — до 6—7,5. По данным [80], для полного соосаждения германия с железом требуется более высокий pH, а именно 7 и выше. Регулируют pH, добавляя соду, аммиак, окись цинка. Хорошие результаты получаются при нейтрализации раствора окисью магния (вследствие нерастЕоримости германата магния). Рекомендуется осаждать в две стадии сначала при pH 4—5 — часть гидроокисей, получая богатый германиевый осадок затем при более высоком pH осаждать полностью, получая бедный материал, возвращаемый на переработку. [c.182]

    Если максимальное координационное число ионов металла М"+ по отношению к лиганду К равно N. таких уравнений будет также Л . В зависимости от характера лиганда координационное число может меняться. Так, известен хлоридный комплекс кобальта СоС1 в котором координационное число кобальта равно 4. При взаимодействии Со2+ с молекулами аммиака возможно образование Со(ЫНз)б , в котором координационное число кобальта равно 6. Аналогично при взаимодействии А1 + с ионами С1- возможно образование А1СЦ, т. е. максимальное координационное число для ионов АР+ равно 4. При взаимодействии же ионов алюминия с ионами Р- образуется ряд комплексов с координационным числом от I до 6 А1Р ,. .... ... А1Рб, т. е. максимальное координационное число ионов алюминия равно 6. Таким образом, координационное число является не только свойством металла, но также зависит от свойств лиганда. Между константами устойчивости, или константами образования К1 [c.240]

    В анализируемый раствор объемом 100 мл вводят 5-кратный избыток винной кислоты (по отношению к алюминию), 1—2 г NHj I и 8—10 капель 0,04%-ного спиртового раствора бромкрезолпурпурового. Нейтрализуют аммиаком (1 1) до перехода окраски индикатора в пурпурную. Осаждают алюминий медленным прибавлением (по каплям) 2—3%-ного раствора оксихинолина в СН3СООН. Нагревают до кипения и слабо кипятят в течение 1 мин. После охлаждения до 60° С осадок отфильтровывают через тигель Шотта Л Ь 4 при умеренном отсасывании и промывают 100 лл холодной воды. [c.36]

    К анализируемому раствору прибавляют 2 жл 4%-ного раствора тиогликолевой кислоты, нейтрализуют аммиаком до pH 3 (проверка по универсальной индикаторной бумаге). Раствор переносят в мерную колбу емкостью 100 м.л, добавляют 15 составного алюминонового раствора (приготовление см. стр. 95), перемешивают и помешают в кипящую водяную баню на 5 мин. После этого раствор помещают в холодную водяную баню. После охлаждения до комнатной температуры разбавляют водой до метки и перемешивают. Раствор наливают в кювету фотоколориметра и дают постоять 1—2 мин. (если в образце много железа). Затем измеряют оптическую плотность при Я = 525 нм. по отношению к раствору холостой пробы. Содержание алюминия находят по калибровочному графику, составленному в аналогичных условиях [938]. [c.99]

    При растворении 2п, СЙ, 81, 8Ь, А1, Ре, Мд, К, Ка происходит частичное восстановление азотной кислоты до аммиака. Стойким по отношению к концентрированной азотной кислоте, начиная с 80% НКОз, как известно, является алюминий. По исследованиям Трилета, наиболее важными факторами являются температура и концентрация кислоты например, при повышении температуры на 10 скорость разъедабия алюминия увеличивается на 100%. Примесь серной кислоты также увеличивает разъедающее действие азотной кислоты на алюминий например, наличие 0,04% На804 увеличивает корродирующее действие НКОд на алюминий в два раза. [c.425]

    Выделяемая из растворов гидроокись галлия обладает высокой сорбционной способностью по отношению к другим катионам. Так, при осаждении ее аммиаком из растворов солей со-осаждаются Mg, Мп, Со, Ni, Си, Zn, d и другие металлы. Для выделения из растворов чистой гидроокиси пользуются пиридином в присутствии большого количества NH4 I (pH >i6,5) . При этом многие металлы образуют с пиридином растворимые комплексы типа [МРу2]2+, не осаждающиеся с гидроокисью. Осадок гидроокиси галлия растворяется как в кислотах, так и в растворах сильных оснований [902]. Кроме этого (в отличие от гидрата окиси алюминия), гидрат окиси галлия растворяется в значительном количестве концентрированного раствора аммиака. При [c.13]

    РеЗ+ сильно мешает определению галлия. При отношении 0а ре=1 20 адсорбция галлия гидратом окиси железа достигает уже 100%. Алюминий и титан при отношении Оа А1 (Т1) = = 1 1 значительно понижают высоту волны галлия. Небольшое количество А1(0Н)з (до 4 мг А1/50 мл) растворяется в насыщенном аммиаке и не мешает определению. Присутствие ванадатов нежелательно, а нитраты полностью уничтожают волну галлия. Ниже приведены величины потенциалов полуволн некоторых ионов, образующих в среде 13 М NH40H и 2 Л1NH4 1 аммиакаты. [c.171]

    Обширная литература по структуре и свойствам поверхности алюмосиликатов обобщена в нескольких обзорах [18, 112, 121]. Отметим наиболее существенные выводы. Многочисленные данные свидетельствуют, что в зависимости от условий эксперимента алюмосиликаты проявляют или бренстедовские, или льюисовские кислотные свойства. ИК-сиектры указывают на присутствие как протонированной, так и непротонированной форм адсорбированного аммиака или пиридина [114, 122—124]. Количество бренстедовских центров уменьшается при обмене на ионы щелочных металлов и растет с увеличением степени гидратации в том же направлении изменяется каталитическая активность геля в реакции крекинга углеводородов. Для разных гелей, дегидратированных нри 770 К, отношение концентрации непротонированной формы адсорбированного пиридина к протонированной колеблется в интервале 1—6. Если дегидратация ведется при 370—770 К, то по степени гидратации алюмосиликаты занимают промежуточное положение между окисью алюминия и двуокисью кремния, но после дегидратации при температурах 670—770 К, которые отвечают важному для катализа интервалу, степень их гидратации лишь немного больше, чем у силикагеля [125]. [c.80]

    В противоположность общепринятому мнению, осаждение этой группы требует большей тщательности, чем осаждение предыдущих групп, как это будет видно из дальнейшего. Осаждение может быть выполнено 1) пропусканием сероводорода в щелочной раствор 2) пропусканием сероводорода в кислый раствор с последующим подщелачиванием раствора и 3) прибавлением сульфида, бисульфида или полисульфида щелочного металла к слабокислому или щелочному раствору. Все эти способы находят применение. Сульфиды щелочных металлов ведут себя в общем одинаково по отношению ко всем элементам, способным образовать сульфиды исключение составляет ртуть. На элементы, не образующие сульфидов, они действуют как растворы соответствующих гидроокисей например, алюминий и бериллий осаждаются сульфидом аммония, но растворимы в растворе сульфида натрия. СуЛЪфид аммония, как правило, следует предпочесть сульфидам натрия и калия. Последние применяют главным образом в металлургическом анализе при отделении меди, свинца, железа и цинка от олова или алюминия. Сульфид калия употребляют редко он применяется только тогда, когда есть к тому достаточное основание, например в присутствии значительного количества сурьмы. Сульфиды натрия и калия лучше применять вместе с соответствующими гидроокисями. То же справедливо и в отношении сульфида аммония, хотя в небо хьшом избытке NH4HS или (КН4)23 можно добавлять и без аммиака. Как общее правило, применения полисульфидов следует избегать, потому что их присутствие ведет к неполному осаждению марганца, а также меди, никеля и кобальта в то же время полисульфиды осаждают щелочноземельные металлы, так как содержат сульфаты. Чрезмерного количества аммонийных солей нужно также избегать, потому что это ведет к неполному осаждению марганца. Осаждение в холодном растворе дает вполне удовлетворительные результаты и часто лучшие, чем в горячем. Никель лучше всего осаждать в охлажденном льдом растворе, защищенном [c.87]

    Как показали Н. П. Курин и П. Е. Богданов, чистая окись кобальта обладает значительными каталитическими свойствами в отношении реакции окисления аммиака под давлением. По нашим исследованиям [1], окись алюминия при этих условиях медленно катализирует процесс окисления аммиака с образованием элементарного азота. По опытам Скотта [2], проводившимся при атмосферном давлении, введение окиси алюминия в кобальтовый катализатор увеличивает активность последнего. В этой свя-ви представляло существенный интерес выяснить, как изменяет каталитические свойства окиси кобальта добавка А1гОз при повышенном давлении (8 кГ/см ), особенно имея в виду образование смешанного катализатора из полупроводников дырочной (С03О4) и электронной проводимости (АЬОз) 1], [c.238]

    Для синтеза аммиака предлагался катализатор, полученный окислением расплавленного железа или сплавов железа в токе кислорода и нагреванием в тигле, покрытом массой, аналогичной приготовляемой [20]. Катализатор для конверсии водяного газа с водяным паром при 320--330°, стойкий по отношению к таким ядам, как сероводород, приготовляют растворением 100 кг железа в разбавленной азотной кислоте, раствор обрабатывают 10 кг хромовой кислоты и 20 кг хромовокислого калия, осаждают аммиаком при 60 —80°, осадок промывают, смешивают с 1 кг углекислого бария и сушат [318]. Другой активный, стойкий катализатор для синтеза аммиака при температуре 550° и давлении 250 ат [скорость на объем газовой реагирующей смеси (ЗН + Ng 2NH3) и часовая объемная скорость реагентов равна 15 000] готовят из чистого железа или железосодержащих руд, окисленных в токе кислорода, с добавкой активаторов, например окиси алюминия или азотнокислого калия. Рекомендуется выдерживать расплавленную жидкость при высокой температуре в течение некоторого времени в токе кислорода. При применении железной руды (магнетита или магнитного железняка), содержащей много примесей (4,0% двуокиси кремния, 4,2% окиси магния, 2,8% окиси алюминия, 0,8% окиси кальция и 0,3% марганца), ее плавят на кислородно-ацетиленовой горелке и вводят активаторы, расплавленную массу выдерживают при высокой температуре с тем, чтобы довести до конца реакцию между окисью железа и активатором и удалить серу и фосфор. При приготовлении катализаторов из железной руды рекомендуется смешивать половину количества актцватора с окисью железа, добавляя вторую половину малыми порциями в частично расплавленную массу. Например, 2 кг магнитного железняка смешивают с 50 г окиси алю-Ашния и 100 г азотнокислого калия (добавляемого малыми порциями), смесь частично расплавляют и обрабатывают избытком кислорода. Приготовленный таким образом катализатор выгружают и процесс повторяют [256]. [c.284]

    Теплота этой реакции составляет 1340 кДж/моль глинозема при 25 °С. В результате спекания образуются безводные алюмоаммонийные квасцы — двойная соль сульфатов алюминия и аммония, диоксид кремния и в газовую фазу выделяются аммиак и вода. На протекание этой реакции большое влияние оказывают температура спекания, доза сульфата аммония и размер частиц алюминиевой руды. Извлечение оксида алюминия с увеличением молярного отношения (ЫН4>2504/А120з до 5/1 непрерывно повышается. Увеличение температуры спекания до 400— 450 °С способствует возрастанию степени извлечения оксида алюминия до 70—75 %. Дальнейшее повышение температуры спекания приводит к уменьшению извлечения АЬОз, что объясняется увеличением степени разложения сульфата аммония. Максимальное извлечение глинозема отмечается при продолжительности спекания 3 ч. Однако при увеличении длительности процесса повышается расход сульфата аммония за счет его разложения и удаления в газовую фазу аммиака и оксидов серы. [c.75]

    Вентиляторы взрывобезопасные, выполненные из алюминия, применяются для перемещения газа и воздуха, содержащего газы и пары, опасные в отношении пожара и взрыва, и для перемещения воздуха, насыщенного иарами азотной, бензойной, борной, молочной, виннокаменной, лимонной, муравьиной, синильной кислот, а также парами амилового технического спирта, аммиака, ацетона, бикарбоната, щелочных металлов, сухого брома, бутилового эфира, водорода, гликоля, глицерина, касторового масла, метилового спирта, нафталина, нефти с примесью сернистых соединений, нитробензола, парафина, пентахлорэтана, сернистого газа и т. д. [c.11]


Смотреть страницы где упоминается термин Алюминий отношение к аммиаку: [c.196]    [c.109]    [c.427]    [c.84]    [c.167]    [c.367]    [c.321]    [c.115]   
Вспомогательные процессы и аппаратура анилинокрасочной промышленности (1949) -- [ c.30 ]




ПОИСК







© 2024 chem21.info Реклама на сайте